307,534 results match your criteria: "university of Science and Technology[Affiliation]"
Materials (Basel)
January 2025
High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan.
Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50-370 Wroclaw, Poland.
This study refers to the application of an advanced tool in the form of numerical modelling in order to develop a low-waste hot die forging technology to produce a connecting rod forging. The technology aims at ensuring a limited amount of the charge material is necessary to produce one forging, as well as minimizing forging forces, and thus the electric energy consumption. The study includes a verification of the current production technology, which constituted the basis for the construction and development of a numerical model.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering and Architecture, Wuyi University, No. 358 Baihua Road, Wuyishan 354300, China.
The ruins of the Imperial City of the Minyue Kingdom were an important site of the Minyue Kingdom during the Han Dynasty. Characteristic bronze arrowheads unearthed from the East Gate, with their exquisite craftsmanship, provide important physical evidence for studying ancient bronze casting technology and the military activities of that time. However, there is still a lack of systematic research on the alloy composition, casting process, and chemical stability of these arrowheads in long-term burial environments.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China.
In this study, the mechanisms of SO adsorption on lignite char and char-supported Fe-Zn-Cu sorbent (FZC sorbent) were investigated. The FZC sorbent was prepared by the impregnation of metal components on raw coal followed by steam gasification. Flue gas desulfurization experiments were carried out on a fixed-bed reactor at 100-300 °C by using simulated flue gas containing SO/O/HO balanced by N.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Resources and Safety Engineering, Central South University, Changsha 410083, China.
Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China.
To investigate the effect of the initial surface roughness on the performance at the initial stage of the current-carrying friction of an elastic friction pair, experiments were conducted using a self-made current-carrying friction and wear tester. The results indicate that under the experimental conditions, the lifespan of the friction pair decreases as the surface roughness and load decrease. When the surface roughness is Ra 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland.
This study investigates carbon fabric-reinforced thermoplastic composites produced via hot pressing, using Polyamide PA6 and Polybutylene Terephthalate (PBT) as matrix materials. These materials are increasingly utilized in the development of lightweight, high-performance, multilayer structures, such as aluminum-reinforced laminates, for automotive and aerospace applications. The mechanical properties, including tensile strength and stiffness, were systematically evaluated under varying loading conditions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Jeju National University, 102 Daehak-Ro, Jeju-si 63243, Republic of Korea.
The microstructure of metallic materials plays a crucial role in determining their performance. In order to accurately predict the dynamic recrystallization (DRX) behavior and microstructural evolution during the hot deformation process of GCr15 bearing steel, a microstructural evolution model for the DRX process of GCr15 steel was established by combining the level set (LS) method with the Yoshie-Laasraoui-Jonas dislocation dynamics model. Firstly, hot compression tests were conducted on GCr15 steel using the Gleeble-1500D thermal simulator, and the hardening coefficient and dynamic recovery coefficient of the Yoshie-Laasraoui-Jonas model were derived from the experimental flow stress data.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5 St., 50-370 Wroclaw, Poland.
In the era of Industry 4.0, additive manufacturing (AM) technology plays a crucial role in optimizing production processes, especially for small- and medium-sized enterprises (SMEs) striving to enhance competitiveness. Selecting the appropriate material for AM is a complex process that requires considering numerous technical, economic, and environmental criteria.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
La-Co-doped ferrite is widely used due to its excellent magnetic properties, but the mechanisms of La-Co doping on its phase formation and magnetic properties remain unclear. This study clarifies the phase formation mechanisms and reveals that La-Co doping reduces the formation temperatures of the intermediate phase SrFeO and thus the final SrFeO phase. This promotes complete formation of SrFeO, enhancing saturation magnetization.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Dental Techniques, "Carol Davila" University of Medicine and Pharmacy, 8, Eroii Sanitari Blvd., 050474 Bucharest, Romania.
Unlabelled: Mandibular reconstruction is essential for restoring both function and aesthetics after segmental resection due to tumoral pathology. This study aimed to conduct a comparative analysis of three reconstruction strategies for defects resulting from segmental mandibular resection, utilizing finite element analysis (FEA).
Methods: A digital model of the mandible was created from CBCT data and optimized for FEA.
Materials (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China.
The shift fork shaft is a key component in transmissions, connecting the shift fork in order to adjust the gear engagement. This study investigates the effects of different welding sequences on deformation and residual stress during plasma welding of the shift fork shaft. A temperature-displacement coupled finite element method, using ABAQUS simulation software and a double ellipsoid heat source model, was employed for the numerical analysis.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
The Diamond lattice cylindrical shell (Diamond LCS) was proposed by a mapping approach based on the triply periodic minimal surfaces (TPMS). The finite element models were built and their accuracy was verified by experimental results. Parameter studies were carried out to investigate the effect of geometric and loading parameters on the bending properties of the Diamond LCSs by the finite element model.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
The grain size of metal materials has a significant impact on their macroscopic properties. However, original metallographic images often suffer from issues such as substantial noise, missing grain boundaries, low contrast, and blurred edges. These challenges hinder the accurate extraction of complete grain boundaries, limiting the precision of grain size measurement and material performance prediction.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland.
This paper presents an experimental method for estimating the fatigue limit of trabecular bone using a single trabecular bone sample, the microstructural parameters of which were determined by microCT. Fatigue tests were carried out using the Locati method, with stepwise increasing load amplitude. The fatigue limits of the trabecular structures were determined experimentally in accordance with Miner's law of fatigue damage accumulation, based on the parameters of the reference S-N curve taken from the literature.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Dairy and Process Engineering, Food Sciences and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland.
The strength and energy of processed biological materials depend, among others, on their properties. Despite the numerous studies available, the relationship between the internal structure of corn grains and their mechanical properties has not yet been explained. Hence, the aim of the work is to explore the relationship between the internal composition of maize kernels and its mechanical properties by studying the impact of the maize seed coat thickness on its breakage susceptibility.
View Article and Find Full Text PDFInsects
January 2025
School of InterNet, the National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230031, China.
Insect pests strongly affect crop growth and value globally. Fast and precise pest detection and counting are crucial measures in the management and mitigation of pest infestations. In this area, deep learning technologies have come to represent the method with the most potential.
View Article and Find Full Text PDFInsects
December 2024
School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China.
The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators.
View Article and Find Full Text PDFInsects
December 2024
Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
Honey robbing, which typically occurs during times of food scarcity, is a perilous foraging strategy for bee colonies and presents a formidable challenge in the realm of beekeeping. This article provides a comprehensive and multifaceted exploration of honey robbing, including the morphology, behavioral traits, timing, and scope of this phenomenon. This exploration elucidates the specific manifestations of honey robbing, offering readers a deeper understanding of its various facets.
View Article and Find Full Text PDFInsects
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
(Lepidoptera: Bombycidae) is an important economic insect, which mainly feeds on mulberry leaves and is widely used in many research fields. The growth and development of silkworm larvae are easily affected by the use of chemical insecticides such as novaluron, a benzoylurea insecticide. However, the effect of novaluron exposure on the reproduction of silkworms has not yet been studied.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Spinal cord injury (SCI) can lead to devastating dysfunctions and complications, significantly impacting patients' quality of life and aggravating the burden of disease. Since the main pathological mechanism of SCI is the disruption of neuronal circuits, the primary therapeutic strategy for SCI involves reconstructing and activating circuits to restore neural signal transmission. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, can modulate the function or state of the nervous system by pulsed magnetic fields.
View Article and Find Full Text PDF