10 results match your criteria: "the Netherlands. Electronic address: peijnenburg@cml.leidenuniv.nl.[Affiliation]"

Terrestrial systems are a significant sink for plastic contamination, including nano- and microplastics (NMPs). To date, limited information is available about the transfer of NMPs up the food web via trophic transfer, however, concerns about this exposure pathway for invertebrates and higher-level organisms have been raised. We aim to examine and quantify the trophic transfer of europium doped polystyrene nanoplastics (Eu-PS; NPs) within a terrestrial food chain.

View Article and Find Full Text PDF

Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment.

View Article and Find Full Text PDF

Species-dependent responses of crop plants to polystyrene microplastics.

Environ Pollut

October 2023

Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands. Electronic address:

Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through two complimentary experiments. First, we investigated the effects of low, medium, and high (10, 10, 10 particles per mL) concentrations of 500 nm polystyrene microplastics (PS-MPs) on seed germination and early development.

View Article and Find Full Text PDF

Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs for Escherichia coli at different mixing ratios (22 binary combinations).

View Article and Find Full Text PDF

Comparative physiological and metabolomics analyses using Ag⎯NPs and HAS31 (PGPR) to alleviate Cr stress in barley (Hordeum vulgare L.).

Environ Pollut

September 2023

Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands. Electronic address:

In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.

View Article and Find Full Text PDF

Nano- and microplastics commonly cause adverse impacts on plants at environmentally relevant levels: A systematic review.

Sci Total Environ

April 2023

Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE The Hague, the Netherlands. Electronic address:

Over the last years there has been significant research on the presence and effects of plastics in terrestrial systems. Here we summarize current research findings on the effects of nano- and microplastics (NMPs) on terrestrial plants, with the aim to determine patterns of response and sensitive endpoints. We conducted a systematic review (based on 78 studies) on the effects of NMPs on germination, plant growth and biochemical biomarkers.

View Article and Find Full Text PDF

Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure.

Sci Total Environ

October 2022

Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands. Electronic address:

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment.

View Article and Find Full Text PDF

Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment.

Ecotoxicol Environ Saf

August 2021

Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands. Electronic address:

The coronavirus disease-19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rampant in the world and is a serious threat to global health. The SARS-CoV-2 RNA has been detected in various environmental media, which speeds up the pace of the virus becoming a global biological pollutant. Because many engineered nanomaterials (ENMs) are capable of inducing anti-microbial activity, ENMs provide excellent solutions to overcome the virus pandemic, for instance by application as protective coatings, biosensors, or nano-agents.

View Article and Find Full Text PDF

A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids.

J Hazard Mater

February 2020

Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720 BA, Bilthoven, the Netherlands. Electronic address:

View Article and Find Full Text PDF

Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.

Food Chem Toxicol

February 2018

Moscow State University, Chemistry Department, 1 Leninskie Gory, bldg. 3, 119991, Moscow, Russia; N.D. Zelinsky Institute of Organic Chemistry, RAS, 47 Leninsky Prospect, 119991, Moscow, Russia.

Inorganic nanomaterials have become one of the new areas of modern knowledge and technology and have already found an increasing number of applications. However, some nanoparticles show toxicity to living organisms, and can potentially have a negative influence on environmental ecosystems. While toxicity can be determined experimentally, such studies are time consuming and costly.

View Article and Find Full Text PDF