10 results match your criteria: "the Netherlands. Electronic address: peijnenburg@cml.leidenuniv.nl.[Affiliation]"
Sci Total Environ
December 2024
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands. Electronic address:
Terrestrial systems are a significant sink for plastic contamination, including nano- and microplastics (NMPs). To date, limited information is available about the transfer of NMPs up the food web via trophic transfer, however, concerns about this exposure pathway for invertebrates and higher-level organisms have been raised. We aim to examine and quantify the trophic transfer of europium doped polystyrene nanoplastics (Eu-PS; NPs) within a terrestrial food chain.
View Article and Find Full Text PDFSci Total Environ
July 2024
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands. Electronic address:
Agricultural lands have been identified as plastic sinks. One source is plastic mulches, which are a source of micro- and nano-sized plastics in agricultural soils. Because of their persistence, there is now a push towards developing biodegradable plastics, which are designed to undergo (partial) breakdown after entering the environment.
View Article and Find Full Text PDFEnviron Pollut
October 2023
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands. Electronic address:
Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through two complimentary experiments. First, we investigated the effects of low, medium, and high (10, 10, 10 particles per mL) concentrations of 500 nm polystyrene microplastics (PS-MPs) on seed germination and early development.
View Article and Find Full Text PDFEnviron Int
July 2023
Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands.
Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs for Escherichia coli at different mixing ratios (22 binary combinations).
View Article and Find Full Text PDFEnviron Pollut
September 2023
Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands. Electronic address:
In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.
View Article and Find Full Text PDFSci Total Environ
April 2023
Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE The Hague, the Netherlands. Electronic address:
Over the last years there has been significant research on the presence and effects of plastics in terrestrial systems. Here we summarize current research findings on the effects of nano- and microplastics (NMPs) on terrestrial plants, with the aim to determine patterns of response and sensitive endpoints. We conducted a systematic review (based on 78 studies) on the effects of NMPs on germination, plant growth and biochemical biomarkers.
View Article and Find Full Text PDFSci Total Environ
October 2022
Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, the Netherlands. Electronic address:
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease-19 (COVID-19) pandemic spread across the world and remains difficult to control. Environmental pollution and habitat conditions do facilitate SARS-CoV-2 transmission as well as increase the risk of exposure to SARS-CoV-2. The coexistence of microplastics (MPs) with SARS-CoV-2 affects the viral behavior in the indoor and outdoor environment, and it is essential to study the interactions between MPs and SARS-CoV-2 because they both are ubiquitously present in our environment.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2021
Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, The Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven 3720 BA, The Netherlands. Electronic address:
The coronavirus disease-19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rampant in the world and is a serious threat to global health. The SARS-CoV-2 RNA has been detected in various environmental media, which speeds up the pace of the virus becoming a global biological pollutant. Because many engineered nanomaterials (ENMs) are capable of inducing anti-microbial activity, ENMs provide excellent solutions to overcome the virus pandemic, for instance by application as protective coatings, biosensors, or nano-agents.
View Article and Find Full Text PDFJ Hazard Mater
February 2020
Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720 BA, Bilthoven, the Netherlands. Electronic address:
Food Chem Toxicol
February 2018
Moscow State University, Chemistry Department, 1 Leninskie Gory, bldg. 3, 119991, Moscow, Russia; N.D. Zelinsky Institute of Organic Chemistry, RAS, 47 Leninsky Prospect, 119991, Moscow, Russia.
Inorganic nanomaterials have become one of the new areas of modern knowledge and technology and have already found an increasing number of applications. However, some nanoparticles show toxicity to living organisms, and can potentially have a negative influence on environmental ecosystems. While toxicity can be determined experimentally, such studies are time consuming and costly.
View Article and Find Full Text PDF