4,378 results match your criteria: "the Barcelona Institute of Science and Technology[Affiliation]"

Article Synopsis
  • - Alternative splicing includes microexons in neuronal proteins, which are often linked to neurodevelopmental disorders, including autism spectrum disorder (ASD).
  • - A specific 24-nucleotide microexon in the RNA-binding protein CPEB4, previously shown to be less included in individuals with ASD, plays a critical role in regulating gene expression linked to neurodevelopment.
  • - The study finds that this microexon helps maintain the flexible regulation of CPEB4 during neuronal activation by preventing its aggregation, allowing it to switch from repressing to activating translation of genes.
View Article and Find Full Text PDF

Structural Evolution of Stapes Controls the Electrochemical CO Reduction on Bimetallic Cu-doped Gold Nanoclusters.

Small

December 2024

Institution Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. De los Naranjos s/n, Valencia, 46022, Spain.

Ligand protected gold nanoclusters have been proposed for electrochemical CO reduction (eCOR) as an alternative to polycrystalline catalysts, showing higher selectivity control due to the tailored composition and precise microenvironment. Here, two gold cluster families are studied with different staple motifs (Au(SR) and Au(SR), where SR = thiolate) doped with Ag or Cu to understand the interplay between the composition and the performance of these catalysts. Detailed cluster characterization and Density Functional Theory simulations demonstrate that the dynamic aspects involving ligand removal are crucial to unraveling the role of the dopant, the cluster curvature, and the staple structure.

View Article and Find Full Text PDF

We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data.

View Article and Find Full Text PDF

High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid.

Biosens Bioelectron

November 2024

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia. Electronic address:

The development of point-of-care wearable devices capable of measuring insulin concentration has the potential to significantly improve diabetes management and life quality of diabetic patients. However, the lack of a suitable point-of-care device for personal use makes regular insulin level measurements challenging, in stark contrast to glucose monitoring. Herein, we report an electrochemical transdermal biosensor that utilizes a high-density polymeric microneedle array (MNA) to detect insulin in interstitial fluid (ISF).

View Article and Find Full Text PDF

The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested.

View Article and Find Full Text PDF

Ni-Catalyzed Stereodivergent Synthesis of N-Glycosides.

Chemistry

November 2024

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.

Herein, we describe a stereoselective Ni-catalyzed N-glycosylation of glycals. The reaction is enabled by addition of an in situ generated nickel hydride across an olefin prior to C-N bond-formation. Stereodivergence can be accomplished on kinetic or thermodynamic grounds, thus giving access to either α- or β-N-glycosides with equal ease.

View Article and Find Full Text PDF

Toward a Plasmon-Based Biosensor throughout a Thermoresponsive Hydrogel.

ACS Appl Polym Mater

November 2024

IMEM-BRT's Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I, second floor, 08019, Barcelona, Spain.

This study investigates the potential of thermoresponsive hydrogels as innovative substrates for future in vitro diagnostic (IVD) applications using AVAC technology, developed and patented by the Mecwins biomedical company. In order to convert the hydrogel in a substrate compatible with AVAC technology, the following prerequisites were established: (1) the hydrogel layer needs to be permeable to gold nanoparticles (AuNPs), and (2) the optical properties of the hydrogel should not interfere with the detection of AuNPs with AVAC technology. These two key aspects are evaluated in this work.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is formed in part by microtubules, which are relatively rigid filaments with inherent structural polarity. One consequence of this polarity is that the two ends of a microtubule have different properties with important consequences for their cellular roles. These differences are often challenging to probe within the crowded environment of the cell.

View Article and Find Full Text PDF

Stitched textile-based microfluidics for wearable devices.

Lab Chip

December 2024

Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.

Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates.

View Article and Find Full Text PDF

Alkanes C-C C-H Bond Activation via a Barrierless Potential Energy Path: Trifluoromethyl Carbenes Enhance Primary C-H Bond Functionalization.

J Am Chem Soc

December 2024

Departamento de Química and Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible, Universidad de Huelva, Huelva 21007, Spain.

In this mixed computational and experimental study, we report a catalytic system for alkane C-C functionalization in which the responsible step for C-H bond activation shows no barrier in the potential energy path. DFT modeling of three silver-based catalysts and four diazo compounds led to the conclusion that the TpAg═C(H)CF (Tp = fluorinated trispyrazolylborate ligand) carbene intermediates interact with methane without a barrier in the potential energy surface, a prediction validated by experimentation using N═C(H)CF as the carbene source. The array of alkanes from propane to -hexane led to the preferential functionalization of the primary sites with unprecedented values of selectivity for an acceptor diazo compound.

View Article and Find Full Text PDF

Reconstructing the last common ancestor of all eukaryotes.

PLoS Biol

November 2024

Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.

Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing.

View Article and Find Full Text PDF

Electro-responsive hyaluronic acid-based click-hydrogels for wound healing.

Carbohydr Polym

January 2025

IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain. Electronic address:

Article Synopsis
  • Researchers developed a new type of hydrogel made from hyaluronic acid and a conductive polymer to help heal challenging skin wounds.
  • The addition of the conductive polymer not only increased the porosity and mechanical strength of the hydrogel but also significantly boosted its electrochemical activity.
  • Tests showed that the hydrogel is biocompatible and can enhance cell migration, effectively closing wounds in about 1 hour when stimulated with a small electric voltage.
View Article and Find Full Text PDF

GENCODE 2025: reference gene annotation for human and mouse.

Nucleic Acids Res

November 2024

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

GENCODE produces comprehensive reference gene annotation for human and mouse. Entering its twentieth year, the project remains highly active as new technologies and methodologies allow us to catalog the genome at ever-increasing granularity. In particular, long-read transcriptome sequencing enables us to identify large numbers of missing transcripts and to substantially improve existing models, and our long non-coding RNA catalogs have undergone a dramatic expansion and reconfiguration as a result.

View Article and Find Full Text PDF

Toward trustable use of machine learning models of variant effects in the clinic.

Am J Hum Genet

December 2024

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain. Electronic address:

Article Synopsis
  • * The ClinGen Sequence Variant Interpretation Working Group, led by Pejaver et al., has introduced a strategy for validating and calibrating these predictive models to ensure they meet clinical guidelines.
  • * Although the proposed strategy is a crucial step, it has notable limitations, and the authors suggest key principles and recommendations to improve the reliability and effectiveness of these variant effect prediction models moving forward.
View Article and Find Full Text PDF

Brain-computer interfaces (BCI) are promising for severe neurological conditions and there are ongoing efforts to develop state-of-the-art neural interfaces, hardware, and software tools. We tested the potential of novel reduced graphene oxide (rGO) electrodes implanted epidurally over the hind limb representation of the primary somatosensory (S1) cortex of rats, and compared them to commercial platinum-iridium (Pt-Ir) 16-channel electrodes (active site diameter: 25m).Motor and somatosensory information was decoded offline from microelectrocorticography (ECoG) signals recorded while unrestrained rats performed a simple behavioral task: pressing a lever and the subsequent vibrotactile stimulation of the glabrous skin at three displacement amplitude levels and at two sinusoidal frequencies.

View Article and Find Full Text PDF
Article Synopsis
  • - Accurate gene annotations are essential for interpreting how genomes function, and the GENCODE consortium has spent twenty years creating reference annotations for human and mouse genomes, serving as a vital resource for researchers globally.
  • - Previous annotations of long non-coding RNAs (lncRNAs) were incomplete and poorly organized, hindering research, prompting GENCODE to launch a comprehensive effort that resulted in adding nearly 18,000 novel human genes and over 22,000 novel mouse genes, significantly increasing the catalog of transcripts.
  • - The new annotations not only show evolutionary patterns and link to genetic variants associated with traits but also improve understanding of previously unclear genomic functions, greatly advancing research into both human and mouse genetic diseases.
View Article and Find Full Text PDF

Proof of concept validation of bioresorbable optical fibers for diffuse correlation spectroscopy.

Biomed Opt Express

November 2024

ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08660 Castelldefels (Barcelona), Spain.

Optical quality bioresorbable materials have been gaining interest in recent years for various interstitial biomedical/medical application. An example of this is when the implant gradually dissolves in the body, providing physiological information over extended periods of time, hence reducing the need for revision surgeries. This study reports for the first time the in-house fabrication of single mode (at 785 nm) calcium phosphate glass (CPG) based bioresorbable optical fibers and investigates their suitability for microvascular blood flow monitoring using diffuse correlation spectroscopy (DCS).

View Article and Find Full Text PDF

Proteomic study identifies Aurora-A-mediated regulation of alternative splicing through multiple splicing factors.

J Biol Chem

November 2024

Univ Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Équipe labellisée LNCC 2014, Rennes, France; Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France. Electronic address:

Article Synopsis
  • Aurora-A kinase is a potential target for cancer therapies, but its inhibition can also cause toxic side effects.
  • Recent research used shotgun proteomics to identify 407 protein partners of Aurora-A, showing it plays a significant role in alternative splicing by interacting with and phosphorylating splicing factors.
  • The study found that inhibiting Aurora-A affects the splicing of 505 genes and revealed a positive correlation between splicing events regulated by Aurora-A and its interacting splicing factors, highlighting its important role in alternative splicing regulation.
View Article and Find Full Text PDF

Most non-muscle invasive bladder cancers have been treated by transurethral resection and following intravesical injection of immunotherapeutic agents. However, the delivery efficiency of therapeutic agents into bladder wall is low due to frequent urination, which leads to the failure of treatment with side effects. Here, we report a urease-powered nanomotor containing the agonist of stimulator of interferon genes (STING) for the efficient activation of immune cells in the bladder wall.

View Article and Find Full Text PDF

Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C.

View Article and Find Full Text PDF

Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae.

Microb Cell Fact

November 2024

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.

The non-pathogenic Mycoplasma pneumoniae engineered chassis (Mycochassis) has demonstrated the ability to express therapeutic molecules in vitro and to be effective for treatment of lung infectious diseases in in vivo mouse models. However, the expression of heterologous molecules, whether secreted or exposed on the bacterial membrane has not been optimized to ensure sufficient secretion and/or exposure levels to exert a maximum in vivo biological effect. Here, we have improved the currently used secretion signal from MPN142 protein.

View Article and Find Full Text PDF

Nuclear metabolism and DNA damage response are intertwined processes, but the precise molecular links remain elusive. Here, we explore this crosstalk using triple-negative breast cancer (TNBC) as a model, a subtype often prone to DNA damage accumulation. We show that the de novo purine synthesis enzyme IMPDH2 is enriched on chromatin in TNBC compared to other subtypes.

View Article and Find Full Text PDF

Subcellular compartmentalization of metabolic enzymes establishes a unique metabolic environment that elicits specific cellular functions. Indeed, the nuclear translocation of certain metabolic enzymes is required for epigenetic regulation and gene expression control. Here, we show that the nuclear localization of the mitochondrial enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) ensures mitosis progression.

View Article and Find Full Text PDF

The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts.

View Article and Find Full Text PDF