16 results match your criteria: "and the Leuven Brain Institute[Affiliation]"

Intracortical recordings reveal the neuronal selectivity for bodies and body parts in the human visual cortex.

Proc Natl Acad Sci U S A

December 2024

Research group Experimental Neurosurgery and Neuroanatomy, Katholieke Universiteit Leuven, and the Leuven Brain Institute, Leuven B-3000, Belgium.

Body perception plays a fundamental role in social cognition. Yet, the neural mechanisms underlying this process in humans remain elusive given the spatiotemporal constraints of functional imaging. Here, we present intracortical recordings of single- and multiunit spiking activity in two epilepsy surgery patients in or near the extrastriate body area, a critical region for body perception.

View Article and Find Full Text PDF

Object recognition and categorization are essential cognitive processes which engage considerable neural resources in the human ventral visual stream. However, the tuning properties of human ventral stream neurons for object shape and category are virtually unknown. We performed large-scale recordings of spiking activity in human Lateral Occipital Complex in response to stimuli in which the shape dimension was dissociated from the category dimension.

View Article and Find Full Text PDF

Neurons responding during action execution and action observation were discovered in the ventral premotor cortex 3 decades ago. However, the visual features that drive the responses of action observation/execution neurons (AOENs) have not been revealed at present. We investigated the neural responses of AOENs in ventral premotor area F5c of 4 macaques during the observation of action videos and crucial control stimuli.

View Article and Find Full Text PDF

Objective: CSF leakage is a major complication after cranial surgery, and although fibrin sealants are widely used for reinforcing dural closure, concerns exist regarding their safety, efficacy, and cost. Leukocyte- and platelet-rich fibrin (L-PRF), an autologous platelet concentrate, is readily available and inexpensive, making it a cost-effective alternative for commercially available fibrin sealants. This study aimed to demonstrate the noninferiority of L-PRF compared with commercially available fibrin sealants in preventing postoperative CSF leakage in supra- and infratentorial cranial surgery, with secondary outcomes focused on CSF leakage risk factors and adverse events.

View Article and Find Full Text PDF

Background: Based on the lack of literature to support any treatment strategy in patients with foot drop due to peroneal nerve entrapment, a prospective study randomizing patients between surgery and conservative treatment is warranted. Since studies comparing surgery to no surgery are often challenging, we first examined the feasibility of such a randomized controlled trial.

Methods/design: An internal feasibility pilot study was conducted to assess several aspects of process, resource, management, and scientific feasibility.

View Article and Find Full Text PDF

Background: Preserved cycling capabilities in patients with Parkinson's disease, especially in those with freezing of gait are still poorly understood. Previous research with invasive local field potential recordings in the subthalamic nucleus has shown that cycling causes a stronger suppression of β oscillations compared to walking, which facilitates motor continuation.

Methods: We recorded local field potentials from 12 patients with Parkinson's disease (six without freezing of gait, six with freezing of gait) who were bilaterally implanted with deep brain stimulation electrodes in the subthalamic nucleus.

View Article and Find Full Text PDF

Background: CSF leakage is a major complication after cranial surgery, thus, adequate dural closure must be performed. Commercially available fibrin sealants are currently considered the gold standard for dural closure, but problems have been reported regarding safety, efficacy, and costs. This trial aims to investigate autologous leukocyte- and platelet-rich fibrin (L-PRF) as an alternative to commercially available fibrin sealants.

View Article and Find Full Text PDF

Background: High-quality evidence is lacking to support one treatment strategy over another in patients with foot drop due to peroneal nerve entrapment. This leads to strong variation in daily practice.

Methods/design: The FOOTDROP (Follow-up and Outcome of Operative Treatment with Decompressive Release Of The Peroneal nerve) trial is a randomized, multi-centre study in which patients with peroneal nerve entrapment and persistent foot drop, despite initial conservative treatment, will be randomized 10 (± 4) weeks after onset between non-invasive treatment and surgical decompression.

View Article and Find Full Text PDF

Introduction: Peroneal nerve entrapment is a frequent cause of foot drop. Despite being frequent, no guidelines exist to recommend surgical or non-invasive treatment, leading to important variations in daily practice.

Research Question: To map variation in daily practice.

View Article and Find Full Text PDF

Introduction: Programmable shunt valve settings can sometimes be difficult to assess using classic read-out tools, warranting a skull X-ray.

Research Question: Can we use available head computed tomography (CT) scans to determine the valve settings, in order to obviate the need for additional skull X-rays?

Material And Methods: The valve setting of two different programmable shunts (Codman Certas Plus® and Sophysa Polaris®) were assessed by two blinded observers in 24 patients using 65 head CT scans (slice thickness ≤2 ​mm). Using multi-planar reconstruction (MPR) tools, images were resliced according to the direction of the valve, allowing a direct readout of the valve settings.

View Article and Find Full Text PDF

Temporal dynamics of neural activity in macaque frontal cortex assessed with large-scale recordings.

Neuroimage

August 2021

Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven and the Leuven Brain Institute, ON2, Herestraat 49, 3000 Leuven, Belgium.

The cortical network controlling the arm and hand when grasping objects consists of several areas in parietal and frontal cortex. Recently, more anterior prefrontal areas have also been implicated in object grasping, but their exact role is currently unclear. To investigate the neuronal encoding of objects during grasping in these prefrontal regions and their relation with other cortical areas of the grasping network, we performed large-scale recordings (more than 2000 responsive sites) in frontal cortex of monkeys during a saccade-reach-grasp task.

View Article and Find Full Text PDF

The value of functional molecular changes outside the seizure onset zone as independent predictive factors of surgical outcome has been scarcely evaluated. The aim of this retrospective study was to evaluate relative metabolic and perfusion changes outside the seizure onset zone as predictors of postoperative outcome in patients with unifocal refractory focal epilepsy. Eighty-six unifocal epilepsy patients who underwent F-FDG PET prior to surgery were included.

View Article and Find Full Text PDF

Fast responses to images of animate and inanimate objects in the nonhuman primate amygdala.

Sci Rep

September 2020

Laboratory for Neuro- and Psychophysiology, and the Leuven Brain Institute, KU Leuven, Herestraat 49 bus 1021, 3000, Leuven, Belgium.

Visual information reaches the amygdala through the various stages of the ventral visual stream. There is, however, evidence that a fast subcortical pathway for the processing of emotional visual input exists. To explore the presence of this pathway in primates, we recorded local field potentials in the amygdala of four rhesus monkeys during a passive fixation task showing images of ten object categories.

View Article and Find Full Text PDF

Introduction: Although deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) represents an established third-line therapy for patients with drug-resistant focal epilepsy, guiding reports on practical treatment principles remain scarce.

Methods: An Expert Panel (EP) of 10 European neurologists and 4 neurosurgeons was assembled to share their experience with ANT-DBS therapy. The process included a review of the current literature, which served as a basis for an online survey completed by the EP prior to and following a face-to-face meeting (Delphi method).

View Article and Find Full Text PDF

Background: Recently, large-scale semi-chronic recording systems have been developed, unique in their capability to record simultaneously from multiple individually moveable electrodes. As these recording systems can cover a large area, knowledge of the exact location of each individual electrode is crucial. Currently, the only method of keeping track of electrode depth and thus location is through detailed notebook keeping on neural activity.

View Article and Find Full Text PDF