56 results match your criteria: "and Universités d'Aix-Marseille I et II[Affiliation]"

Coxsackievirus B3 protease 3C: expression, purification, crystallization and preliminary structural insights.

Acta Crystallogr F Struct Biol Commun

December 2016

Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, University Campus, 26500 Patras, Greece.

Viral proteases are proteolytic enzymes that orchestrate the assembly of viral components during the viral life cycle and proliferation. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis are presented of protease 3C, the main protease of an emerging enterovirus, coxsackievirus B3, that is responsible for many cases of viral myocarditis. Polycrystalline protein precipitates suitable for X-ray powder diffraction (XRPD) measurements were produced in the presence of 22-28%(w/v) PEG 4000, 0.

View Article and Find Full Text PDF

Les protéines non structurales des Alphavirus : rôle dans la réplication et l'interaction du virus avec la cellule hôte.

Virologie (Montrouge)

February 2013

CNRS, universités d'Aix-Marseille-I et II, UMR 7257, architecture et fonction des macromolécules biologiques, ESIL Case 925, 13288 Marseille, France.

Alphaviruses (genus of the family Togaviridae) are emergent arthropod borne viruses. They can cause mild to severe diseases including fever, arthritis, and in certain cases encephalitis leading to neurological sequels. Alphaviruses are enveloped, single-stranded and positive-sense RNA viruses.

View Article and Find Full Text PDF

Binding of the Dengue virus S-adenosyl-L-methionine (AdoMet)-dependent mRNA cap methyltransferase (NS5MTaseDV ) with adamantane derivatives was explored using molecular modeling methods and (nucleoside-2'O)-methyltransferase bioassay. The studied compounds include urea derivatives of adamantane and the antiviral drugs amantadine and rimantadine. The urea derivatives of adamantanes had previously been identified as inhibitors of NS5MTaseDV .

View Article and Find Full Text PDF

The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness.

Adv Exp Med Biol

April 2012

Architecture et Fonction des Macromolécules Biologiques, Universités d'Aix-Marseille I et II, Marseille, France.

In this chapter, I focus on the biochemical and structural characterization of the complex between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) and the C-terminal X domain (XD) of the viral phosphoprotein (P). I summarize the main experimental data available so far pointing out the prevalently disordered nature of N(TAIL) even after complex formation and the role of the flexible C-terminal appendage in the binding reaction. I finally discuss the possible functional role of these residual disordered regions within the complex in terms of their ability to capture other regulatory, binding partners.

View Article and Find Full Text PDF

Structural disorder within paramyxovirus nucleoproteins and phosphoproteins.

Mol Biosyst

January 2012

Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités d'Aix-Marseille I et II, Marseille, France.

This review focuses on the experimental data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely Nipah (NiV), Hendra (HeV) and measles (MeV) viruses. We provide a detailed description of the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domains (N(TAIL)) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within N(TAIL)-XD complexes, which therefore provide illustrative examples of "fuzziness".

View Article and Find Full Text PDF

Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a 'cap-snatching' mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA.

View Article and Find Full Text PDF

Molecular mapping of the RNA Cap 2'-O-methyltransferase activation interface between severe acute respiratory syndrome coronavirus nsp10 and nsp16.

J Biol Chem

October 2010

INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France. Electronic address:

Several protein-protein interactions within the SARS-CoV proteome have been identified, one of them being between non-structural proteins nsp10 and nsp16. In this work, we have mapped key residues on the nsp10 surface involved in this interaction. Alanine-scanning mutagenesis, bioinformatics, and molecular modeling were used to identify several "hot spots," such as Val(42), Met(44), Ala(71), Lys(93), Gly(94), and Tyr(96), forming a continuous protein-protein surface of about 830 Å(2), bearing very conserved amino acids among coronaviruses.

View Article and Find Full Text PDF

Automated assay for screening the enzymatic release of reducing sugars from micronized biomass.

Microb Cell Fact

July 2010

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS et Université d'Aix-Marseille I et II, 163 Avenue de Luminy CP 925, 13288 Marseille Cedex 09, France.

Background: To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties.

View Article and Find Full Text PDF

High yield synthesis, purification and characterisation of the RNase L activators 5'-triphosphate 2'-5'-oligoadenylates.

Antiviral Res

September 2010

Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.

Upon viral infection, double-stranded viral RNA is detected very early in the host cell by several cellular 2'-5' oligoadenylate synthetases, which synthesize 2'-5' adenylate oligonucleotides that activate the cellular RNase L, firing an early primary antiviral response through self and non-self RNA cleavage. Transfecting cells with synthetic 2'-5' adenylate oligonucleotides activate RNase L, and thus provide a useful shortcut to study the early steps of cellular and viral commitments into this pathway. Defined 2'-5' adenylate oligonucleotides can be produced in vitro, but their controlled synthesis, purification, and characterisation have not been reported in detail.

View Article and Find Full Text PDF

Structural disorder within the measles virus nucleoprotein and phosphoprotein.

Protein Pept Lett

August 2010

Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités d'Aix-Marseille I et II, 163, Avenue de Luminy, Case 932, 13288 Marseille Cedex 09, France.

In this review, we summarize the main experimental data showing the abundance of structural disorder within the measles virus (MeV) nucleoprotein (N) and phosphoprotein (P), and focus on the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domain of MeV N (N(TAIL)) upon binding to the C-terminal X domain of P (XD). The functional implications of structural disorder are discussed in light of the ability of disordered regions to establish a complex molecular partnership, thereby leading to a variety of biological effects, including tethering of the polymerase complex onto the nucleocapsid template, stimulation of viral transcription and replication, and virus assembly. We also discuss the ability of N(TAIL) to establish interactions with additional cellular co-factors, including the major inducible heat shock protein, which can modulate the strength of the N(TAIL)-XD interaction.

View Article and Find Full Text PDF

In vitro reconstitution of SARS-coronavirus mRNA cap methylation.

PLoS Pathog

April 2010

Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.

SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase.

View Article and Find Full Text PDF

The prevention and treatment of flavivirus infections are public health priorities. Dengue fever is the most prevalent mosquito-borne viral disease of humans, affecting more than 50 million people annually. Despite the urgent need to control dengue infections, neither specific antiviral therapies nor licensed vaccines exist and the molecular basis of dengue pathogenesis is not well understood.

View Article and Find Full Text PDF

Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV.

Acta Crystallogr D Biol Crystallogr

March 2010

Architecture et Fonction des Macromolécules Biologiques UMR 6098, CNRS, Universités d'Aix-Marseille I et II, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9, France.

Article Synopsis
  • The structure of a 14 kDa protein from the Acidianus two-tailed virus was determined using single-wavelength anomalous diffraction (SAD) at a 2.0 Å wavelength.
  • Although the expectation was that methionine sulfurs would be sufficient for structure resolution, a chloride ion proved crucial for successful phasing.
  • This research highlights the potential of utilizing light atoms and chloride ions in protein structure determination, suggesting that long-wavelength data collection can be a faster alternative to traditional methods like selenomethionine substitution.
View Article and Find Full Text PDF

RNA-dependent RNA polymerases from flaviviruses and Picornaviridae.

Curr Opin Struct Biol

December 2009

Centre National de la Recherche Scientifique, Université d'Aix-Marseille I et II, UMR 6098 AFMB, 13288 Marseille Cedex 9, France.

Flaviviruses and picornaviruses are positive-strand RNA viruses that encode the RNA-dependent RNA polymerase (RdRp) required for replicating the viral genome in infected cells. Because of their specific and essential role in the virus life cycle, RdRps are prime targets for antiviral drugs. Recent structural data have shed light on the different strategies used by RdRps from flaviviruses and Picornaviridae to initiate RNA polymerization.

View Article and Find Full Text PDF

Macro domains (also called "X domains") constitute a protein module family present in all kingdoms of life, including viruses of the Coronaviridae and Togaviridae families. Crystal structures of the macro domain from the Chikungunya virus (an "Old World" alphavirus) and the Venezuelan equine encephalitis virus (a "New World" alphavirus) were determined at resolutions of 1.65 and 2.

View Article and Find Full Text PDF

There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization.

Acta Crystallogr Sect F Struct Biol Cryst Commun

October 2008

Architecture et Fonction des Macromolécules Biologiques, CNRS et Universités d'Aix-Marseille I et II, UMR 6098, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9, France.

In the course of a crystallographic study of the Methanosarcina mazei CorA transporter, the membrane protein was obtained with at least 95% purity and was submitted to crystallization trials. Small crystals (<100 microm) were grown that diffracted to 3.42 A resolution and belonged to space group R32, with unit-cell parameters a = b = 145.

View Article and Find Full Text PDF

The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation.

View Article and Find Full Text PDF

The flavivirus polymerase as a target for drug discovery.

Antiviral Res

October 2008

Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.

Flaviviruses are emerging pathogens of increasingly important public health concern in the world. For most flaviviruses such as dengue virus (DENV) and West Nile virus (WNV) neither vaccine nor antiviral treatment is available. The viral RNA-dependent RNA polymerase (RdRp) non-structural protein 5 (NS5) has no equivalent in the host cell and is essential for viral replication.

View Article and Find Full Text PDF

The coronavirus family of positive-strand RNA viruses includes important pathogens of livestock, companion animals, and humans, including the severe acute respiratory syndrome coronavirus that was responsible for a worldwide outbreak in 2003. The unusually complex coronavirus replicase/transcriptase is comprised of 15 or 16 virus-specific subunits that are autoproteolytically derived from two large polyproteins. In line with bioinformatics predictions, we now show that feline coronavirus (FCoV) nonstructural protein 16 (nsp16) possesses an S-adenosyl-L-methionine (AdoMet)-dependent RNA (nucleoside-2'O)-methyltransferase (2'O-MTase) activity that is capable of cap-1 formation.

View Article and Find Full Text PDF

Background: In the treatment of HIV, the loose active site of the HIV-1 reverse transcriptase (RT) allows numerous nucleotide analogues to act as proviral DNA 'chain-terminators'. Acyclic nucleotide phosphonate analogues (ANPs) represent a particular class of nucleotide analogue that does not possess a ribose moiety. The structural basis for their substrate efficiency regarding viral DNA polymerases is poorly understood.

View Article and Find Full Text PDF

The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein.

Virus Res

May 2008

Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy-Case 925, Marseille Cedex 9, France.

Many genetic and mechanistic features distinguish the coronavirus replication machinery from that encoded by most other RNA viruses. The coronavirus replication/transcription complex is an assembly of viral and, most probably, cellular proteins that mediate the synthesis of both the unusually large (approximately 30 kb) RNA genome and an extensive set of subgenomic mRNAs. The viral components of the complex are encoded by the giant replicase gene, which is expressed in the form of two polyproteins (pp1a and pp1ab) that are processed into 16 cleavage products (nonstructural proteins 1-16).

View Article and Find Full Text PDF

The VIZIER project: preparedness against pathogenic RNA viruses.

Antiviral Res

April 2008

Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille Cedex 09, France.

Life-threatening RNA viruses emerge regularly, and often in an unpredictable manner. Yet, the very few drugs available against known RNA viruses have sometimes required decades of research for development. Can we generate preparedness for outbreaks of the, as yet, unknown viruses? The VIZIER (VIral enZymes InvolvEd in Replication) (http://www.

View Article and Find Full Text PDF

Dynamic crosstalk between cell adhesion molecules, extracellular matrix and soluble informative factors is essential for cancer cell migration and invasion. Here, we investigated the mechanisms by which the E-cadherin/catenin complex and alpha v integrin can modulate insulin-like growth factor-I (IGF-I)-induced cell migration. Human colon mucosa, human colon cancer cell lines, HT29-D4 and HCT-8 derivatives that differ in their expression of alpha-catenin, were used as models.

View Article and Find Full Text PDF

The N-terminal 33 kDa domain of non-structural protein 5 (NS5) of dengue virus (DV), named NS5MTase(DV), is involved in two of four steps required for the formation of the viral mRNA cap (7Me)GpppA(2'OMe), the guanine-N7 and the adenosine-2'O methylation. Its S-adenosyl-l-methionine (AdoMet) dependent 2'O-methyltransferase (MTase) activity has been shown on capped (7Me+/-)GpppAC(n) RNAs. Here we report structural and binding studies using cap analogues and capped RNAs.

View Article and Find Full Text PDF

Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase.

Acta Crystallogr Sect F Struct Biol Cryst Commun

June 2007

Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy-Case 925, Marseille CEDEX 9, France.

The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults.

View Article and Find Full Text PDF