2 results match your criteria: "and Kumamoto Kinoh Hospital[Affiliation]"

Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons.

J Pharmacol Exp Ther

September 2023

Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd, extracellular Ca, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS).

View Article and Find Full Text PDF

Depression of Synaptic N-methyl-D-Aspartate Responses by Xenon and Nitrous Oxide.

J Pharmacol Exp Ther

January 2023

Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.N.); Kumamoto Health Science University, Kumamoto, Japan (K.N.), and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)

In "synapse bouton preparation" of rat hippocampal CA3 neurons, we examined how Xe and NO modulate N-methyl-D-aspartate (NMDA) receptor-mediated spontaneous and evoked excitatory post-synaptic currents (sEPSC and eEPSC). This preparation is a mechanically isolated single neuron attached with nerve endings (boutons) preserving normal physiologic function and promoting the exact evaluation of sEPSC and eEPSC responses without influence of extrasynaptic, glial, and other neuronal tonic currents. These sEPSCs and eEPSCs are elicited by spontaneous glutamate release from many homologous glutamatergic boutons and by focal paired-pulse electric stimulation of a single bouton, respectively.

View Article and Find Full Text PDF