1,069 results match your criteria: "and Institute of Physics[Affiliation]"

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Low Temperature Emissive Cyclometalated Cobalt(III) Complexes.

Inorg Chem

January 2025

Institute for Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Paderborn 33098, Germany.

A series of Co complexes [Co(ImP)][PF], with HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazole-2-ylidene)) and R = Me, Et, Pr, Bu, is presented in this work. The influence of the strong donor ligand on the ground and excited-state photophysical properties was investigated in the context of different alkyl substituents at the imidazole nitrogen. X-ray diffraction revealed no significant alterations of the structures and all differences in the series emerge from the electronic structures.

View Article and Find Full Text PDF

W-Class States-Identification and Quantification of Bell-CHSH Inequalities' Violation.

Entropy (Basel)

December 2024

Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic.

We discuss a family of W-class states describing three-qubit systems. For such systems, we analyze the relations between the entanglement measures and the nonlocality parameter for a two-mode mixed state related to the two-qubit subsystem. We find the conditions determining the boundary values of the negativity, parameterized by concurrence, for violating the Bell-CHSH inequality.

View Article and Find Full Text PDF

Epitaxial Stabilization of a Pyrochlore Interface between Weyl Semimetal and Spin Ice.

Nano Lett

January 2025

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF

Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.

View Article and Find Full Text PDF

Two-dimensional (2D) semiconductors, combining remarkable electrical properties and mechanical flexibility, offer fascinating opportunities for flexible integrated circuits (ICs). Despite notable progress, so far the showcased 2D flexible ICs have been constrained to basic logic gates and ring oscillators with a maximum integration scale of a few thin film transistors (TFTs), creating a significant disparity in terms of circuit scale and functionality. Here, we demonstrate medium-scale flexible ICs integrating both combinational and sequential elements based on 2D molybdenum disulfide (MoS).

View Article and Find Full Text PDF

Robust ferromagnetism in wafer-scale FeGaTe above room-temperature.

Nat Commun

December 2024

School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.

The discovery of ferromagnetism in van der Waals (vdW) materials has enriched the understanding of two-dimensional (2D) magnetic orders and opened new avenues for fundamental physics research and next generation spintronics. However, achieving ferromagnetic order at room temperature, along with strong perpendicular magnetic anisotropy, remains a significant challenge. In this work, we report wafer-scale growth of vdW ferromagnet FeGaTe using molecular beam epitaxy.

View Article and Find Full Text PDF

Highly Efficient Electrode of Dirac Semimetal PtTe for MoS-Based Field Effect Transistors.

ACS Appl Mater Interfaces

January 2025

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Two-dimensional van der Waals (vdW) layered materials not only are an intriguing fundamental scientific research platform but also provide various applications to multifunctional quantum devices in the field-effect transistors (FET) thanks to their excellent physical properties. However, a metal-semiconductor (MS) interface with a large Schottky barrier causes serious problems for unleashing their intrinsic potentials toward the advancements in high-performance devices. Here, we show that exfoliated vdW Dirac semimetallic PtTe can be an excellent electrode for electrons in MoS FETs.

View Article and Find Full Text PDF

Memristors and magnetic tunnel junctions are showing great potential in data storage and computing applications. A magnetoelectrically coupled memristor utilizing electron spin and electric field-induced ion migration can facilitate their operation, uncover new phenomena, and expand applications. In this study, devices consisting of Pt/(LaCoO/SrTiO)/LaCoO/Nb:SrTiO (Pt/(LCO/STO)/LCO/NSTO) are engineered using pulsed laser deposition to form the LCO/STO superlattice layer, with Pt and NSTO serving as the top and bottom electrodes, respectively.

View Article and Find Full Text PDF

The development of two-dimensional (2D) semiconductors is limited by the lack of doping methods. We propose surface isovalent substitution as an efficient doping mechanism for 2D semiconductors by revealing the evolution of the structure and electronic properties of 2D Se/Te. Because of the different electronegativity of Se and Te, Se substitution for Te at the specific lattice sites introduces electric dipoles and leads to charge redistribution, which lowers the work function and tunes the Te films from p-type to n-type semiconductors.

View Article and Find Full Text PDF

In pursuit of high- hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor 2/-BiH at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.

View Article and Find Full Text PDF

We study two prototypical models of self-organized criticality, namely sandpile automata with deterministic (Bak-Tang-Wiesenfeld) and probabilistic (Manna model) dynamical rules, focusing on the nature of stress fluctuations induced by driving-adding grains during avalanche propagation, and dissipation through avalanches that hit the system boundary. Our analysis of stress evolution time series reveals robust cyclical trends modulated by collective fluctuations with dissipative avalanches. These modulated cycles attain higher harmonics, characterized by multifractal measures within a broad range of timescales.

View Article and Find Full Text PDF

In the zoo of emergent symmetries in quantum many-body physics, the previously unrealized emergent spacetime supersymmetry (SUSY) is particularly intriguing. Although it was known that spacetime SUSY could emerge at the (1+1)d tricritical Ising transition, an experimental realization is still absent. In this Letter, we propose to realize emergent spacetime SUSY using reconfigurable Rydberg atom arrays featuring two distinct sets of Rydberg excitations, tailored for implementation on dual-species platforms.

View Article and Find Full Text PDF

Author Correction: Orbital-selective effect of spin reorientation on the Dirac fermions in a non-charge-ordered kagome ferromagnet FeGe.

Nat Commun

December 2024

Department of Physics, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China.

View Article and Find Full Text PDF

Altermagnetism (AM), a newly discovered magnetic state, ingeniously integrates the properties of ferromagnetism and antiferromagnetism, representing a significant breakthrough in the field of magnetic materials. Despite experimental verification of some typical AM materials, such as MnTe and MnTe_{2}, the pursuit of AM materials that feature larger spin splitting and higher transition temperature is still essential. Here, our research focuses on CrSb, which possesses Néel temperature of up to 700 K and giant spin splitting near the Fermi level (E_{F}).

View Article and Find Full Text PDF

Chiral spin-liquid-like state in pyrochlore iridate thin films.

Nat Commun

November 2024

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.

Article Synopsis
  • Pyrochlore iridates are notable for studying complex phenomena due to their strong spin-orbit coupling, electronic interactions, and geometrically frustrated lattice structures.
  • In thin films of (111) YIrO with thicknesses ≤30 nm, researchers found a unique quantum disordered state at temperatures as low as 5 K, which was characterized by dispersionless magnetic excitations.
  • Below approximately 125 K, an anomalous Hall effect suggests the existence of chiral spin configurations, attributed to magnetic frustration in the lower-dimensional structure that leads to spin-liquid behavior without long-range order.
View Article and Find Full Text PDF

With a nontrivial topological band and intrinsic magnetic order, two-dimensional (2D) MnBiTe-family materials exhibit great promise for exploring exotic quantum phenomena and potential applications. However, the synthesis of 2D MnBiTe-family materials via chemical vapor deposition (CVD), which is essential for advancing device applications, still remains a significant challenge since it is difficult to control the reactions among multi-precursors and form pure phases. Here, we report a controllable synthesis of high-quality magnetic topological insulator MnBiTe and MnBiTe multilayers via an evaporation-rate-controlled CVD approach.

View Article and Find Full Text PDF

Symmetry invariants of a group specify the classes of quasiparticles, namely the classes of projective irreducible co-representations in systems having that symmetry. More symmetry invariants exist in discrete point groups than the full rotation group O(3), leading to new quasiparticles restricted to lattices that do not have any counterpart in a vacuum. We focus on the fermionic quasiparticle excitations under "spin-space group" symmetries, applicable to materials where long-range magnetic order and itinerant electrons coexist.

View Article and Find Full Text PDF

Vibrational and Magnetic States of Point Defects in Bilayer MoSe.

J Am Chem Soc

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Article Synopsis
  • Defects in two-dimensional materials like MoSe affect their physical and chemical properties, making atomic-scale characterization crucial.
  • Researchers utilized spectroscopic imaging scanning tunneling microscopy to investigate how Mo antisite and V vacancy defects behave differently depending on their charge states in MoSe bilayers on graphene.
  • The study found that these defects can generate a local magnetic moment and could lead to advancements in material engineering and spin-based applications.
View Article and Find Full Text PDF

Creating a heterostructure by combining two magnetically and structurally distinct ruthenium oxides is a crucial approach for investigating their emergent magnetic states and interactions. Previously, research has predominantly concentrated on the intrinsic properties of the ferromagnet SrRuO and recently discovered altermagnet RuO solely. Here, the study engineers an ultrasharp sublattice-matched heterointerface using pseudo-cubic SrRuO and rutile RuO, conducting an in-depth analysis of their spin interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Goldene is a newly developed, one-atom-thick gold material similar to graphene, and this study analyzes its structure and electronic properties alongside its ability to adsorb carbon monoxide (CO).
  • The research uses advanced calculations to examine how the introduction of vacancies and doping with elements like aluminum, boron, sulfur, phosphorus, and nitrogen affects CO adsorption characteristics.
  • Findings indicate that while pristine and vacancy-containing goldene have weak CO interactions (physisorption), doping with boron or nitrogen significantly enhances chemical adsorption strength, indicating goldene's potential for applications in CO activation and conversion.
View Article and Find Full Text PDF

Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. Here, we demonstrate an approach to stabilize a distinct oxygen octahedron rotation (OOR) characterized by in the ultrathin LaNiO sublayers of the LaNiO/CaTiO superlattices. Unlike the OOR in the LaNiO bare film, the OOR favors high conductivity, driving the LaNiO sublayer to a metallic state of ~100 K even when the layer thickness is as thin as 2 unit cells (u.

View Article and Find Full Text PDF

Orbital-selective effect of spin reorientation on the Dirac fermions in a non-charge-ordered kagome ferromagnet FeGe.

Nat Commun

November 2024

Department of Physics, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China.

Kagome magnets provide a fascinating platform for the realization of correlated topological quantum phases under various magnetic ground states. However, the effect of the magnetic spin configurations on the characteristic electronic structure of the kagome-lattice layer remains elusive. Here, utilizing angle-resolved photoemission spectroscopy and density functional theory calculations, we report the spectroscopic evidence for the spin-reorientation effect of a kagome ferromagnet FeGe, which is composed solely of kagome planes.

View Article and Find Full Text PDF
Article Synopsis
  • Cu-based perovskite oxide catalysts are promising for CO electromethanation but face challenges with selectivity for CH and stability.
  • The study presents self-assembled Cu-based perovskite/calcium oxide hybrids that feature strong interfacial interactions, enhancing performance in CH electrosynthesis.
  • The LaCuO/(CaO) hybrid shows optimal CH activity and selectivity, achieving a high CH selectivity of 77.6% while demonstrating better stability than other Cu-based catalysts.
View Article and Find Full Text PDF