5 results match your criteria: "and Gilead Sciences and IOCB Research Center[Affiliation]"
Bioorg Med Chem
April 2016
Institute of Organic Chemistry and Biochemistry v.v.i and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
In the current study, sixteen novel derivatives of (R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethanamine were synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. Chemical structures together with purity of the synthesized compounds were substantiated by IR, (1)H, (13)C, (19)F NMR, high resolution mass spectrometry and elemental analysis. The optical activities were confirmed by optical rotation measurements.
View Article and Find Full Text PDFChem Commun (Camb)
February 2016
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.
Current virtual screening tools are fast, but reliable scoring is elusive. Here, we present the 'SQM/COSMO filter', a novel scoring function featuring a quantitative semiempirical quantum mechanical (SQM) description of all types of noncovalent interactions coupled with implicit COSMO solvation. We show unequivocally that it outperforms eight widely used scoring functions.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2015
Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
The calculated properties of substituted carboranes such as dipole moment, polarisability, the magnitude of the σ-hole and the desolvation free energy are compared with these properties in comparable aromatic and cyclic aliphatic organic compounds. Dispersion and charge transfer energies are similar. However, the predicted strength of the halogen bonds with the same electron donor (based on the magnitude of the σ-hole) is larger for neutral C-vertex halogen-substituted carboranes than for their organic counterparts.
View Article and Find Full Text PDFJ Phys Chem B
December 2013
Institute of Organic Chemistry and Biochemistry, v.v.i., and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
The quantum mechanics (QM)-based scoring function that we previously developed for the description of noncovalent binding in protein-ligand complexes has been modified and extended to treat covalent binding of inhibitory ligands. The enhancements are (i) the description of the covalent bond breakage and formation using hybrid QM/semiempirical QM (QM/SQM) restrained optimizations and (ii) the addition of the new ΔG(cov)' term to the noncovalent score, describing the "free" energy difference between the covalent and noncovalent complexes. This enhanced QM-based scoring function is applied to a series of 20 vinyl sulfone-based inhibitory compounds inactivating the cysteine peptidase cathepsin B1 of the Schistosoma mansoni parasite (SmCB1).
View Article and Find Full Text PDFCurr Comput Aided Drug Des
March 2013
Institute of Organic Chemistry and Biochemistry, v.v.i. and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic.
A quantum mechanics (QM)-based scoring function has been applied to complexes of cyclin-dependent kinase 2 (CDK2) and thirty-one pyrazolo[1,5-a]pyrimidine-based inhibitors and their bioisosteres. A hybrid three-layer QM/MM setup (DFT-D/PM6-D3H4X/AMBER in generalized Born solvent) was used here for the first time as an extension of our previous full QM and SQM/MM (SQM means semiempirical QM) approaches. Two approaches to obtain the structures of the CDK2/inhibitor complexes were examined: i) building the modifications from one X-ray structure available coupled with a conformational search and ii) docking the compounds into CDK2.
View Article and Find Full Text PDF