177,935 results match your criteria: "and Chinese Academy Medical Sciences & Peking Union Medical College.[Affiliation]"

Introduction: Chinese herbal medicines are relatively inexpensive and have fewer side effects, making them an effective option for improving health and treating diseases. As a result, they have gained more attention in recent years. The weaning period is a critical stage in the life of yaks, often inducing stress in calves.

View Article and Find Full Text PDF

Engineered biomaterials in stem cell-based regenerative medicine.

Life Med

August 2023

Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.

Stem cell-based regenerative therapies, which harness the self-renewal and differentiation properties of stem cells, have been in the spotlight due to their widespread applications in treating degenerative, aging, and other, generally intractable diseases. Therapeutically effective hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells have been used in numerous basic and translational studies with exciting results. However, pre-/post-transplantation issues of poor cell survival and retention, uncontrolled differentiation, and insufficient numbers of cells engrafted into host tissues are the major challenges in stem cell-based regenerative therapies.

View Article and Find Full Text PDF

Colonic stem cell from severe ulcerative colitis maintains environment-independent immune activation by altering chromatin accessibility and global mA loss.

Life Med

August 2023

Key Laboratory of RNA Science and Engineering, Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.

Ulcerative colitis (UC) is a chronic inflammatory disease of colon, which is characterized by cryptarchitectural distortion. Alternation of colonic stem cell (CoSC) contributed to the occurrence of UC, yet the regulatory mechanisms remain unclear. To investigate the dysregulation of transcriptional and post-transcriptional regulation, we performed RNA-seq, ATAC-seq, and mA meRIP-seq analysis of the cultured CoSCs that were isolated from UC patients.

View Article and Find Full Text PDF

A CRISPR/Cas9-based kinome screen identifies ErbB signaling as a new regulator of human naïve pluripotency and totipotency.

Life Med

August 2023

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing 100191, China.

Regulation of totipotency and naïve pluripotency is crucial for early human embryo development. However, the mechanisms of naïve pluripotency and totipotency regulation in humans, especially the signaling pathways involved in these processes, remain largely unknown. Here, using the conversion of human extended pluripotent stem cells (hEPSCs) to naïve pluripotent stem cells as a model, we performed a CRISPR/Cas9-based kinome knockout screen to analyze the effect of disrupting 763 kinases in regulating human naïve pluripotency.

View Article and Find Full Text PDF

Background: Recently there has been an increasing number of studies have explored apoptosis mechanisms in lung cancer (LC). However, no researchers have conducted a bibliometric analysis of the most cited articles in this field.

Objective: To examine the top 100 most influential and cited publications on apoptosis in non-small cell lung cancer (NSCLC) from 2004 to 2023, summarizing research trends and key focus areas.

View Article and Find Full Text PDF

Leucine deprivation results in antidepressant effects via GCN2 in AgRP neurons.

Life Metab

February 2023

Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Essential amino acids (EAAs) are crucial nutrients, whose levels change in rodents and patients with depression. However, how the levels of a single EAA affects depressive behaviors remains elusive. Here, we demonstrate that although deprivation of the EAA leucine has no effect in unstressed mice, it remarkably reverses the depression-like behaviors induced by chronic restraint stress (CRS).

View Article and Find Full Text PDF

Probing and imaging phospholipid dynamics in live cells.

Life Metab

August 2024

State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Distinct phospholipid species display specific distribution patterns across cellular membranes, which are important for their structural and signaling roles and for preserving the integrity and functionality of the plasma membrane and organelles. Recent advancements in lipid biosensor technology and imaging modalities now allow for direct observation of phospholipid distribution, trafficking, and dynamics in living cells. These innovations have markedly advanced our understanding of phospholipid function and regulation at both cellular and subcellular levels.

View Article and Find Full Text PDF

Apolipoprotein A-IV and its derived peptide, T55-121, improve glycemic control and increase energy expenditure.

Life Metab

August 2024

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

It is crucial to understand the glucose control within our bodies. Bariatric/metabolic surgeries, including laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB), provide an avenue for exploring the potential key factors involved in maintaining glucose homeostasis since these surgeries have shown promising results in improving glycemic control among patients with severe type 2 diabetes (T2D). For the first time, a markedly altered population of serum proteins in patients after LSG was discovered and analyzed through proteomics.

View Article and Find Full Text PDF

Boosting the oxygen reduction activity on metal surfaces by fine-tuning interfacial water with midinfrared stimulation.

Innovation (Camb)

January 2025

International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.

View Article and Find Full Text PDF

China's innovative national plan to combat fungal diseases and antifungal resistance.

Innovation (Camb)

January 2025

National Center of China Fungal Disease Surveillance System (CFDSS), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

View Article and Find Full Text PDF

Distinct evolution patterns of influenza viruses and implications for vaccine development.

Innovation (Camb)

January 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong SAR, China.

In conclusion, the distinct evolution patterns of panzootic influenza A(H5Nx) compared to A(H1N1) and A(H3N2) complicate vaccine development. Effective strategies must consider these unique patterns and the impact of pre-existing immunity. Leveraging AI-based methods for optimized antigen design is essential to mitigate the potential impact of emerging antigenically variable strains and will provide valuable insights for developing more effective vaccines to prepare for future pandemics.

View Article and Find Full Text PDF

Photopyroelectric tweezers for versatile manipulation.

Innovation (Camb)

January 2025

Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.

Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.

View Article and Find Full Text PDF

Runx2 controls the osteogenic fate of growth plate chondrocytes.

Genes Dis

May 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.

View Article and Find Full Text PDF

The evolution of ovarian somatic cells characterized by transcriptome and chromatin accessibility across rodents, monkeys, and humans.

Life Med

October 2024

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.

The ovary plays a crucial role in the reproductive system of female mammals by producing mature oocytes through folliculogenesis. Non-human model organisms are extensively utilized in research on human ovarian biology, thus necessitating the investigation of conservation and divergence in molecular mechanisms across species. In this study, we employed integrative single-cell analysis of transcriptome and chromatin accessibility to identify the evolutionary conservation and divergence patterns of ovaries among humans, monkeys, mice, rats, and rabbits.

View Article and Find Full Text PDF

Xenotransplantation: How close are we to clinical applications?

Life Med

October 2024

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.

View Article and Find Full Text PDF

When synthetic biology meets medicine.

Life Med

February 2024

CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

In recent years, the world has faced significant challenges with the coronavirus disease 2019 (COVID-19) pandemic, as well as other infectious diseases such as Zika and Ebola. Furthermore, the rapid rise of non-communicable diseases such as diabetes, heart disease, and cancer has placed tremendous strain on healthcare resources and systems. Unfortunately, advancements in drug development, diagnostics, and therapeutics have struggled to keep pace with the emergence and progression of diseases, necessitating the exploration of new technologies for the discovery and development of biomedicines and biotherapies.

View Article and Find Full Text PDF

Tracing TMEM106B fibril deposition in aging and Parkinson's disease with dementia brains.

Life Med

February 2024

Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.

Transmembrane protein 106B (TMEM106B), previously identified as a risk factor in frontotemporal lobar degeneration, has recently been detected to form fibrillar aggregates in the brains of patients with various neurodegenerative diseases (NDs) and normal elders. While the specifics of when and where TMEM106B fibrils accumulate in human brains, as well as their connection to aging and disease progression, remain poorly understood. Here, we identified an antibody (NBP1-91311) that directly binds to TMEM106B fibrils extracted from the brain and to Thioflavin S-positive TMEM106B fibrillar aggregates in brain sections.

View Article and Find Full Text PDF

From clones to synthetic embryos.

Life Med

February 2024

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

View Article and Find Full Text PDF

A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement.

Life Med

February 2024

Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.

In human aging, liver aging per se not only increases susceptibility to liver diseases but also increases vulnerability of other organs given its central role in regulating metabolism. Total liver function tends to be well maintained in the healthy elderly, so liver aging is generally difficult to identify early. In response to this critical challenge, the Aging Biomarker Consortium of China has formulated an expert consensus on biomarkers of liver aging by synthesizing the latest scientific literature, comprising insights from both scientists and clinicians.

View Article and Find Full Text PDF

Ketone bodies determine the female reproductive lifespan.

Life Metab

October 2022

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

View Article and Find Full Text PDF

Glucose uptake differs in organs and tissues across the human body. To date, however, there has been no single atlas providing detailed glucose uptake profiles across the entire human body. Therefore, we aimed to generate a detailed profile of glucose uptake across the entire human body using the uEXPLORER positron emission tomography/computed tomography scanner, which offers the opportunity to collect glucose metabolic imaging quickly and simultaneously in all sites of the body.

View Article and Find Full Text PDF

Editorial: TRLs (triglycerides-rich lipoproteins): a new target for atherosclerosis.

Front Endocrinol (Lausanne)

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.

View Article and Find Full Text PDF