11 results match your criteria: "and Artemisinin Research Center[Affiliation]"

Luminol is a well-known electrochemiluminescence (ECL) fluorophore that is applied in various sensing fields as an ECL reporter. Regulating the signal off/on transition of an ECL fluorophore offers great opportunities for sensors' design; however, such attempts on luminol are extremely scarce as it was regarded to lack promising modification sites. In this study, we developed four luminol derivatives with modification at the amine site and the enol site and systematically explored possible caging strategies to regulate ECL emission.

View Article and Find Full Text PDF

Ginkgolides with anti-PAF activity from Ginkgo biloba L.

Fitoterapia

June 2024

Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China. Electronic address:

Four undescribed ginkgolides, including two rare sesquiterpene ginkgolides (compounds 1 and 2) and two diterpenoid ginkgolides (compounds 3 and 4), were isolated from Ginkgo biloba L. The structures of these four ginkgolides were identified based on extensive spectroscopic analysis, DP4+ probability analysis and X-ray diffraction. Compounds 1 and 2 exhibited excellent antiplatelet aggregation activities with IC values of 1.

View Article and Find Full Text PDF

The development of efficient catalytic reactions with excellent atom and step economy employing sustainable catalysts is highly sought-after in chemical synthesis to reduce the negative effects on the environment. The most commonly-used strategy to construct allylic compounds relies on the transition-metal-catalysed nucleophilic substitution reaction of allylic alcohol derivatives. These syntheses exhibit good yield and selectivity, albeit at the expense of toxic and expensive catalysts and extra steps.

View Article and Find Full Text PDF

Quantitative chemical proteomics reveals anti-cancer targets of Celastrol in HCT116 human colon cancer cells.

Phytomedicine

July 2022

Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China; Department of physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530022, China; Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530022, China; Department of Urology, the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China; Central People's Hospital of Zhanjiang, Zhanjiang 524037, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China. Electronic address:

Background: Celastrol (Cel) is a naturally-derived compound with anti-cancer properties and exerts beneficial effects against various diseases. Although an extensive body of research already exists for Cel, the vast majority are inductive studies with limited validation of specific pathways and functions. The cellular targets that bind to Cel remain poorly characterized, which limits attempts to uncover its mechanism of action.

View Article and Find Full Text PDF

Editorial: Nanotechnology in Traditional Medicines and Natural Products.

Front Chem

February 2021

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China.

View Article and Find Full Text PDF

Genomics-driven discovery of a new cyclodepsipeptide from the guanophilic fungus .

Org Biomol Chem

March 2021

State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. and University of Chinese Academy of Sciences, Beijing, 100049, China.

Two potential non-ribosomal peptide synthetases (NRPSs) were identified in the genome of a guanophilic fungus Amphichorda guana by bioinformatics analysis and gene knockout experiments. Liquid chromatography coupled with mass spectrometry (LC-MS) guided isolation led to the discovery of a new cyclodepsipeptide isaridin H (1) and seven known analogs, desmethylisaridin E (2), isaridin E (3), isariin A (4), iso-isariin B (5), iso-isariin D (6), isariin E (7), and nodupetide (8). The absolute configuration of isaridin H (1) was achieved by Marfey's method.

View Article and Find Full Text PDF

Determination of serum cholesterol (Chol) is important for disease diagnosis, and has attracted great attention during the last few decades. Herein, a new magnetic nanoparticle-based ligand replacement strategy has been presented for chemical luminescence detection of Chol. The detection depends on ligand replacement from ferrocene (Fc) to Chol through a β-cyclodextrin (β-CD)-based host-guest interaction, which releases Fc-Hemin as a catalyst for the luminol/hydrogen peroxide chemical luminescence system.

View Article and Find Full Text PDF

Target Profiling of an Anticancer Drug Curcumin by an In Situ Chemical Proteomics Approach.

Methods Mol Biol

March 2021

Institute of Chinese Materia Medica, and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China.

Interdisciplinary chemical proteomics approaches have been widely applied to the identification of specific targets of bioactive small molecules or drugs. In this chapter, we describe the application of a cell-permeable activity-based curcumin probe (Cur-P) with an alkyne moiety to detect and identify specific binding targets of curcumin in HCT116 colon cancer cells. Through click chemistry, a fluorescent tag or a biotin tag is attached to the probe-modified curcumin targets for visualization or affinity purification followed by mass spectrometric identification.

View Article and Find Full Text PDF

Artemisinin and its derivatives (ARTs) are sort of important antimalarials, which exhibit a wide range of biological activities including anticancer effect. To solve the issues regarding poor solubility and limited bioavailability of ARTs, nanoformulation of ARTs has thus emerged as a promising strategy for cancer treatment. A common consideration on nanoARTs design lies on ARTs' delivery and controlled release, where ARTs are commonly regarded as hydrophobic drugs.

View Article and Find Full Text PDF

A new FRET probe has been prepared for ratiometric fluorescence detection of hydroxyl radicals. It has been successfully used for detecting mitochondria-localized drug activation in living cells and imaging endogenous hydroxyl radicals in zebrafish gastrointestinal (GI) tracts under normal culturing conditions.

View Article and Find Full Text PDF

A new fluorescent probe for sensing of biothiols and screening of acetylcholinesterase inhibitors.

Org Biomol Chem

April 2020

Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, PR. China.

A new N2O-type BODIPY probe (LF-Bop) has been proposed for the selective and sensitive detection of biologically relevant small molecular thiols. This detection is based on the Michael addition reaction between the thiol and nitrostyrene groups in the probe, which decreases the quenching effect from the nitro group, thus resulting in the recovery of the deep-red fluorescence from the BODIPY structure. The results show that LF-Bop is able to detect all tested free thiols through a fluorescence turn-on assay.

View Article and Find Full Text PDF