503 results match your criteria: "and ⊥Center for Molecular Biophysics[Affiliation]"

A Stepwise Targeting and Antibacterial Strategy by Leukocyte Membrane-Based Conjugated Oligomer Nanoparticles.

ACS Appl Bio Mater

June 2023

Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P.R. China.

Bacterial infection poses an enormous threat to human life and health. The inability of drugs to be effectively delivered to the site of infection and the development of bacterial resistance make the treatment process more difficult. Herein, a stepwise targeted biomimetic nanoparticle (NPs@M-P) with inflammatory tendency and Gram-negative bacterial targeting was designed, which can achieve efficient antibacterial activity under near-infrared triggering.

View Article and Find Full Text PDF

Hypoxia shapes the tumor microenvironment, modulates distinct cell population activities, and activates pathological angiogenesis in cancer, where endothelial cells (ECs) are the most important players. This study aimed to evidence the influences of the tumor microenvironment on the global gene expression pattern characteristic for ECs and the distinct responses displayed by tumor-derived ECs in comparison to the healthy endothelium during endothelial to mesenchymal transition (EndMT) and its regulation by miR-200-b-3p. Immortalized lines of ECs from the same patient with breast cancer, healthy breast tissue (HBH.

View Article and Find Full Text PDF

Knowledge of the physical properties of ionic liquids (ILs), such as the surface tension and speed of sound, is important for both industrial and research applications. Unfortunately, technical challenges and costs limit exhaustive experimental screening efforts of ILs for these critical properties. Previous work has demonstrated that the use of quantum-mechanics-based thermochemical property prediction tools, such as the conductor-like screening model for real solvents, when combined with machine learning (ML) approaches, may provide an alternative pathway to guide the rapid screening and design of ILs for desired physiochemical properties.

View Article and Find Full Text PDF

Hypoxia, an inevitable feature of locally advanced solid tumors, has been known as an adverse prognostic factor, a driver of an aggressive phenotype, and an unfavorable factor in therapies. Myo-inositol trispyrophosphate (ITPP) is a hemoglobin modifier known to both increase O2 release and normalize microvasculature. Our goal was to measure the tumor oxygen partial pressure dynamic changes and timing of the therapeutic window after ITPP systemic administration.

View Article and Find Full Text PDF
Article Synopsis
  • Right ventricular (RV) function is crucial for the prognosis of patients with pulmonary arterial hypertension (PAH), where the RV initially adapts to increased workload but can ultimately fail.
  • The shift from compensated RV hypertrophy to decompensated RV failure is not well understood, and current treatments for RV failure are lacking, as those developed for left ventricular (LV) failure do not work for the RV.
  • This paper explores how oxygen delivery and hypoxia may drive RV hypertrophy and failure in PAH, highlighting the need for new therapies by understanding the differences in RV and LV physiology.
View Article and Find Full Text PDF

The contrast-variation method in small-angle neutron scattering (SANS) is a uniquely powerful technique for determining the structure of individual components in biomolecular systems containing regions of different neutron scattering length density ρ. By altering the ρ of the target solute and the solvent through judicious incorporation of deuterium, the scattering of desired solute features can be highlighted. Most contrast-variation methods focus on highlighting specific bulk solute elements, but not on how the scattering at specific scattering vectors q, which are associated with specific structural distances, changes with contrast.

View Article and Find Full Text PDF

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic.

View Article and Find Full Text PDF

Natural compounds, such as resveratrol (Res), are currently used as adjuvants for anticancer therapies. To evaluate the effectiveness of Res for the treatment of ovarian cancer (OC), we screened the response of various OC cell lines to the combined treatment with cisplatin (CisPt) and Res. We identified A2780 cells as the most synergistically responding, thus optimal for further analysis.

View Article and Find Full Text PDF

This dataset contains ligand conformations and docking scores for 1.4 billion molecules docked against 6 structural targets from SARS-CoV2, representing 5 unique proteins: MPro, NSP15, PLPro, RDRP, and the Spike protein. Docking was carried out using the AutoDock-GPU platform on the Summit supercomputer and Google Cloud.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment.

View Article and Find Full Text PDF

Ultrasound sensitive O microbubbles radiosensitize murine breast cancer but lead to higher metastatic spread.

Free Radic Biol Med

April 2023

Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Kraków, Poland. Electronic address:

The inadequate level of oxygenation in tumors has been shown to correlate not only with greater invasiveness of cancer cells, but also with a reduction in their sensitivity to anticancer therapies. Over the years, many attempts have been made to increase the oxygenation level of cancer, but most of them have been ineffective. We investigated the heterogeneous response of tumor tissue to phospholipid-coated oxygen microbubbles (OMB) in murine tumors in vivo using oxygen and hemoglobin saturation mapping and the influence of OMB treatment on microvasculature, perfusion, and radiotherapy effectiveness.

View Article and Find Full Text PDF

Tumour evolution and efficacy of treatments are controlled by the microenvironment, the composition of which is primarily dependent on the angiogenic reaction to hypoxic stress. Tumour angiogenesis normalization is a challenge for adjuvant therapy strategies to chemo-, radio- and immunotherapeutics. Myo-inositol trispyrophosphate (ITPP) appears to provide the means to alleviate hypoxia in the tumour site by a double molecular mechanism.

View Article and Find Full Text PDF

The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable.

View Article and Find Full Text PDF

Tumor Cell Nanovaccines Based on Genetically Engineered Antibody-Anchored Membrane.

Adv Mater

March 2023

State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China.

Despite the promise in whole-tumor cell vaccines, a key challenge is to overcome the lack of costimulatory signals. Here, agonistic-antibody-boosted tumor cell nanovaccines are reported by genetically engineered antibody-anchored membrane (AAM) technology, capable of effectively activating costimulatory pathways. Specifically, the AAM can be stably constructed following genetic engineering of tumor cell membranes with anti-CD40 single chain variable fragment (scFv), an agonistic antibody to induce costimulatory signals.

View Article and Find Full Text PDF

Mesenchymal stem cells have many applications in medicine. Attention to the proliferation and differentiation of stem cell differentiation is an important issue. The aim of this study was to investigate the possibility of optimal isolation, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) using human serum.

View Article and Find Full Text PDF

Disordered Domain Shifts the Conformational Ensemble of the Folded Regulatory Domain of the Multidomain Oncoprotein c-Src.

Biomacromolecules

February 2023

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2.

View Article and Find Full Text PDF

Pathogenic fungal infection is a major clinical threat because pathogenic fungi have developed resistant mechanisms to evade the innate immune response, especially interactions with macrophages. Herein, a strategy to activate immune responses of macrophages to fungi based on near-infrared (NIR) responsive conjugated polymer nanoparticles (CPNs-M) is reported for antifungal immunotherapy. Under NIR light irradiation, CPNs-M exposes β-glucan on the surface of fungal conidia by photothermal damage and drug released from CPNs-M.

View Article and Find Full Text PDF

Recent studies have demonstrated a new role for , a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of in the functional and structural properties of this brain region. (magnetic resonance imaging and localized spectroscopy, behavior analysis) and (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and knockout (KO) mice.

View Article and Find Full Text PDF

Dynamic odd-even effect in -alkane systems: a molecular dynamics study.

Phys Chem Chem Phys

November 2022

School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Drive, Columbus, OH, USA.

Alternation in various properties of -alkanes (CH) as a function of carbon content () is termed 'odd-even effect'. Here, we report a comprehensive molecular dynamics simulation study on -alkane systems carried out with ranging between 3 (propane) and 8 (octane), examining the odd-even effect in melting point, density, intramolecular conformational ordering, translational and rotational motion. We observe an odd-even alternation in these properties, but with heptane ( = 7) exhibiting anomalous behavior for all except conformational ordering.

View Article and Find Full Text PDF

Increasing oxygen tension in tumor tissue using ultrasound sensitive O microbubbles.

Free Radic Biol Med

November 2022

Jagiellonian University, Department of Biophysics and Cancer Biology, Kraków, Poland. Electronic address:

Low tissue oxygenation significantly impairs the effectiveness of cancer therapy and promotes a more aggressive phenotype. Many strategies to improve tissue oxygenation have been proposed throughout the years, but only a few showed significant effects in clinical settings. We investigated stability and ultrasound pulse (UP) triggered oxygen release from phospholipid coated oxygen microbubbles (OMB) in vitro and in murine tumors in vivo using EPR oximetry.

View Article and Find Full Text PDF

β-N-Methyl-Amino-L-Alanine (BMAA) produced by 95% of cyanobacteria is in constant augmentation with cyanobacteria worldwide proliferation due to global warming and eutrophication. Previously, it has been shown that this contaminant induced neurological disorders, notably by acting as a developmental toxin. However, very few studies focus on the impact of BMAA on neuroglial cells, like astrocytes and microglial cells, in a developmental context.

View Article and Find Full Text PDF

Serotonin (5-HT) is known as a potent immune cell modulator in autoimmune diseases and should be protective in the pathogenesis of multiple sclerosis (MS). Nevertheless, there is limited knowledge about receptors involved in 5-HT effects as well as induced mechanisms. Among 5-HT receptors, the 5-HT receptor is able to activate naïve T cells and influence the inflammatory response; however, its involvement in the disease has never been studied so far.

View Article and Find Full Text PDF

Neuroinflammation is one of the important manifestations of the amyloid β peptide (Aβ) protein-induced neurotoxic signaling pathway in which the aggregation of Aβ causes an increase in reactive oxygen species (ROS) and Ca concentration. Here, near-infrared (NIR) photothermal-responsive conjugated polymer nanoparticles were designed to regulate ROS and Ca signaling to alleviate neuroinflammation. Under 808 nm laser irradiation, the nanoparticles effectively penetrated the blood-brain barrier (BBB) and reduced the aggregation of Aβ and partially disaggregated the aggregates outside the cell, thereby reducing ROS content which downregulated the oxidative stress damage to cells.

View Article and Find Full Text PDF

Structure-based virtual high-throughput screening involves docking chemical libraries to targets of interest. A parameter pertinent to the accuracy of the resulting pose is the root mean square deviation (RMSD) from a known crystallographic structure, i. e.

View Article and Find Full Text PDF

Hemoglobin from either red meat or bowel bleeding may promote oxidative stress and increase the risk of colorectal cancer (CRC). Additionally, solid cancers or their metastases may be present with localized bruising. Escape from therapy-induced senescence (TIS) might be one of the mechanisms of tumor re-growth.

View Article and Find Full Text PDF