3 results match your criteria: "a joint institution of the Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Fraunhofer IIS[Affiliation]"

Wind-induced noise recorded with a compact microphone array can be exploited to infer the mean velocity of the free-field airflow. In this work, a model-based method to estimate the wind flow speed and direction is proposed that uses spectro-spatial correlations of closely spaced microphone signals. As shown in a recent work by the present authors, the normalized cross-power spectral density of flow-induced noise measured with closely spaced microphones, also referred to as the spatial coherence, can be approximated by a semi-empirical model, named the Corcos model.

View Article and Find Full Text PDF

The spatial properties of a noise field can be described by a spatial coherence function. Synthetic multichannel noise signals exhibiting a specific spatial coherence can be generated by properly mixing a set of uncorrelated, possibly non-stationary, signals. The mixing matrix can be obtained by decomposing the spatial coherence matrix.

View Article and Find Full Text PDF

This paper introduces a time-variant reverberation algorithm as an extension of the feedback delay network (FDN). By modulating the feedback matrix nearly continuously over time, a complex pattern of concurrent amplitude modulations of the feedback paths evolves. Due to its complexity, the modulation produces less likely perceivable artifacts and the time-variation helps to increase the liveliness of the reverberation tail.

View Article and Find Full Text PDF