27 results match your criteria: "a University of Notre Dame.[Affiliation]"

This article provides the theory and application of the 2-stage maximum likelihood (ML) procedure for structural equation modeling (SEM) with missing data. The validity of this procedure does not require the assumption of a normally distributed population. When the population is normally distributed and all missing data are missing at random (MAR), the direct ML procedure is nearly optimal for SEM with missing data.

View Article and Find Full Text PDF

Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given sample size, also provides more accurate results than those based on standard asymptotics.

View Article and Find Full Text PDF