369,951 results match your criteria: "a Department of Molecular Cell Biology; Leiden University Medical Center ; Leiden[Affiliation]"

Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Background: Lead (Pb) could be toxic to the female reproductive system, and resveratrol (Res) may overcome this toxicity.

Objective: To investigate the Res impact on the catalase (), glutathione peroxidase (), and superoxide dismutase () gene expression in the ovary and on the Cat and Gpx enzyme activity in the serum of rats exposed to lead acetate.

Materials And Methods: In this experimental study, 33 female Wistar rats (8-10 wk, 180-200 gr) were divided into 6 groups: a control group (normal saline), a Res group (40 mg/kg), and a Pb group (lead acetate 30 mg/kg).

View Article and Find Full Text PDF

Pancreatic cancer is among the most challenging tumors to treat, and due to its immune tolerance characteristics, existing immunotherapy methods are not effective in alleviating the disease. Oncolytic virus therapy, a potential new strategy for treating pancreatic cancer, also faces the limitation of being ineffective when used alone. Elucidating the key host endogenous circular RNAs (circRNAs) involved in M1 virus-mediated killing of pancreatic ductal adenocarcinoma (PDAC) cells may help overcome this limitation.

View Article and Find Full Text PDF

Circ-PAN3 facilitates hepatocellular carcinoma growth via sponging miR-153 and upregulating cyclin D1.

Oncol Res

January 2025

Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Circular RNAs (circRNAs) play a pivotal role in the development and advancement of various cancer types. However, the involvement of circ-PAN3 in hepatocellular carcinoma (HCC) is not well understood. To shed light on this, we conducted a comprehensive study through biochemistry, cell biology, molecular biology, and bioinformatics techniques to investigate the role of circ-PAN3 and its associated pathway in the progression of HCC.

View Article and Find Full Text PDF

Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases.

View Article and Find Full Text PDF

Insights on Bmi-1 therapeutic targeting in head and neck cancers.

Oncol Res

January 2025

LICIFO, Department of Restorative Sciences, Faculty of Dentistry, University of Costa Rica (HNSCC), San José, 11501, Costa Rica.

The B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) protein of the polycomb complex is an essential mediator of the epigenetic transcriptional silencing by the chromatin structure. It has been reported to be crucial for homeostasis of the stem cells and tumorigenesis. Though years of investigation have clarified Bmi-1's transcriptional regulation, post-translational modifications, and functions in controlling cellular bioenergetics, pathologies, and DNA damage response, the full potential of this protein with so many diverse roles are still unfulfilled.

View Article and Find Full Text PDF

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 73 of 78 (93.

View Article and Find Full Text PDF

PerC B-Cells Activation via Thermogenetics-Based CXCL12 Generator for Intraperitoneal Immunity Against Metastatic Disseminated Tumor Cells.

Adv Mater

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Environmental Science and Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China.

During cancer peritoneal metastasis (PM), conventional antigen-presenting cells (dendritic cells, macrophages) promote tumorigenesis and immunosuppression in peritoneal cavity. While intraperitoneal immunotherapy (IPIT) has been used in clinical investigations to relieve PM, the limited knowledge of peritoneal immunocytes has hindered the development of therapeutic IPIT. Here, a dendritic cell-independent, next-generation IPIT is described that activates peritoneal cavity B (PerC B) cell subsets for intraperitoneal anti-tumor immunity via exogenous antigen presentation.

View Article and Find Full Text PDF

Prions are assemblies of misfolded prion protein that cause several fatal and transmissible neurodegenerative diseases, with the most common phenotype in humans being sporadic Creutzfeldt-Jakob disease (sCJD). Aside from variation of the prion protein itself, molecular risk factors are not well understood. Prion and prion-like mechanisms are thought to underpin common neurodegenerative disorders meaning that the elucidation of mechanisms could have broad relevance.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

Background: Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for PitNET-induced bone invasion are lacking in clinical practice.

View Article and Find Full Text PDF

Novel transcripts of EMT driving the malignant transformation of oral submucous fibrosis.

Sci Rep

January 2025

Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.

Oral submucous fibrosis (OSF) is a chronic, progressive, and fibrotic condition of the oral mucosa that carries an elevated risk of malignant transformation. We aimed to identify and validate novel genes associated with the regulation of epithelial-to-mesenchymal transition (EMT) in OSF. Genes regulating EMT were identified through differential gene expression analysis, using a LogFC threshold of -1 and + 1 and a padj value < 0.

View Article and Find Full Text PDF

The management of micronutrients, such as boron (B) and zinc (Zn), is critical for plant growth and crop yields. One method of rapid intervention crop management to mitigate nutritional deficiency is the foliar supply of B and Zn. Our study investigates the effect of foliar-supplied B and Zn availability on the global transcriptional modulation in soybean (Glycine max).

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

Overexpression of miR-124 enhances the therapeutic benefit of TMZ treatment in the orthotopic GBM mice model by inhibition of DNA damage repair.

Cell Death Dis

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.

Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.

View Article and Find Full Text PDF

The cryptic lncRNA-encoded microprotein TPM3P9 drives oncogenic RNA splicing and tumorigenesis.

Signal Transduct Target Ther

January 2025

MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing.

View Article and Find Full Text PDF

Exploiting agri-food residues for kombucha tea and bacterial cellulose production.

Int J Biol Macromol

January 2025

NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:

Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.

View Article and Find Full Text PDF

Despite numerous attempts to understand the molecular mechanisms behind the development of liver cancer, it continues to pose a significant worldwide health challenge. Transcriptome sequencing, a powerful tool in molecular biology, has played a pivotal role in uncovering the intricate gene expression profiles underlying hepatocellular carcinoma (HCC). In the present study, we identified a total of 808 differentially expressed genes (DEGs), with 584 exhibiting downregulation, and 224 showing upregulation following apigetrin treatment.

View Article and Find Full Text PDF

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

Genomic evolution of SARS-CoV-2 in Morocco: Insights from Whole Genome Sequences collected from 2020 to 2024.

Virus Res

January 2025

Molecular Biology and Functional Genomics Platform, National Centre for Scientific and Technical Research (CNRST), Rabat, Morocco; Genomic Centre for Human Pathologies (GENOPATH), Neuroscience and Neurogenetics Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco. Electronic address:

This study investigates the evolution and genetic diversity of SARS-CoV-2 strains circulating in Morocco to track the spread, clade distributions and mutations of the virus across various regions from February 2020 to June 2024. The genome sequences were retrieved from the GISAID database. A total of 2630 SARS-CoV-2 genome sequences were analyzed using bioinformatic tools such as Nextclade, followed by phylogenetic and statistical analyses.

View Article and Find Full Text PDF

Surveying helix 12 dynamics within constitutively active estrogen receptors using bipartite tetracysteine display.

J Biol Chem

January 2025

Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.

Somatic Y537S and D538G mutations within the estrogen receptor alpha ligand-binding domain (ERα-LBD) have been linked to enhanced cell proliferation, survival, and metastases in ER-positive breast cancers. Such mutations are thought to confer ligand-independent receptor activation by increasing the flexibility of helix 12 (H12), a segment within the ERα-LBD that acts as a dynamic regulator of ERα activity. We employed bipartite tetracysteine display coupled with the biarsenical profluorophore FlAsH-EDT to monitor ligand-independent structural transitions of H12 in ERα-LBDs that include Y537S or D538G mutations.

View Article and Find Full Text PDF

TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida 32610. Electronic address:

Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress.

View Article and Find Full Text PDF

Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy.

Ageing Res Rev

January 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment.

View Article and Find Full Text PDF