193 results match your criteria: "a Centre for Research in Agricultural Genomics CRAG CSIC-IRTA-UAB-UB[Affiliation]"
PLoS Genet
June 2014
Institute of Structural and Molecular Biology, SynthSys, University of Edinburgh, Edinburgh, United Kingdom.
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis.
View Article and Find Full Text PDFMethods Mol Biol
December 2014
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.
Plants use two pathways for the production of the same universal isoprenoid precursors: the mevalonic acid (MVA) pathway and the methylerythritol 4-phosphate (MEP) pathway. Inhibitors of the MVA pathway prevent the activity of the shoot apical meristem and the development of true leaves in seedlings, whereas those inhibiting the MEP pathway show an additional bleaching phenotype. Here, we describe two methods to quantify plant resistance to inhibitors of the MVA pathway or the MEP pathway based on seedling establishment and photosynthetic pigment measurements.
View Article and Find Full Text PDFMethods Mol Biol
December 2014
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain.
Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit.
View Article and Find Full Text PDFAbscisic acid (ABA) is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls), which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway.
View Article and Find Full Text PDFJ Exp Bot
August 2014
Department of Horticulture and Crop Science, The Ohio State University/OARDC, 1680 Madison Avenue, Wooster, OH-44691, USA.
Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where currently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the cloned QTLs belong to families with a few to many members.
View Article and Find Full Text PDFJ Exp Bot
June 2014
Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Univ. Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
Seedlings growing under diurnal conditions display maximal growth at the end of the night in short-day (SD) photoperiods. Current evidence indicates that this behaviour involves the action of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) together with PIF4 and PIF5, through direct regulation of growth-related genes at dawn coinciding with a PIF3 accumulation peak generated by phytochrome-imposed oscillations in protein abundance. Here, to assess how alterations in PIF3 levels impact seedling growth, the night-specific accumulation of PIF3 was modulated by releasing SD-grown seedlings into continuous light, or by exposing them to a phytochrome-inactivating end-of-day far-red pulse (EOD-FRp).
View Article and Find Full Text PDFBMC Plant Biol
November 2013
Department of Molecular Genetics, Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain.
Background: Camptothecin is a plant alkaloid that specifically binds topoisomerase I, inhibiting its activity and inducing double stranded breaks in DNA and activating the cell responses to DNA damage.
Results: Maize cultured cells were incubated in the presence of different concentrations of camptothecin. Camptothecin inhibits cultured cell growth, induces genomic DNA degradation, and induces a 32 kDa Ca2+/Mg2+-dependent nuclease activity.
BMC Genomics
November 2013
Molecular Genetics Department, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain.
Background: Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability.
View Article and Find Full Text PDFArch Biochem Biophys
November 2013
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain. Electronic address:
Carrot (Daucus carota) is a biannual plant that accumulates massive amounts of carotenoid pigments in the storage root. Although the root of carrot plants was white before domestication, intensive breeding generated the currently known carotenoid-rich varieties, including the widely popular orange carrots that accumulate very high levels of the pro-vitamin A carotenoids β-carotene and, to a lower extent, α-carotene. Recent studies have shown that the developmental program responsible for the accumulation of these health-promoting carotenes in underground roots can be completely altered when roots are exposed to light.
View Article and Find Full Text PDFNew Phytol
October 2013
Institute of Plant Biology, Biological Research Centre, Temesvári krt.62., H-6726, Szeged, Hungary.
Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds.
View Article and Find Full Text PDFBiochem J
May 2013
Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain.
Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway.
View Article and Find Full Text PDFMol Plant
September 2013
Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain.
Sumoylation is an essential posttranslational modification that participates in many biological processes including stress responses. However, little is known about the mechanisms that control Small Ubiquitin-like MOdifier (SUMO) conjugation in vivo. We have evaluated the regulatory role of the heterodimeric E1 activating enzyme, which catalyzes the first step in SUMO conjugation.
View Article and Find Full Text PDFTheor Appl Genet
June 2013
IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
The coexistence of both climacteric and non-climacteric genotypes and the availability of a set of genetic and genomic resources make melon a suitable model for genetic studies of fruit ripening. We have previously described a QTL, ETHQB3.5, which induces climacteric fruit ripening in the near-isogenic line (NIL) SC3-5 that harbors an introgression on linkage group (LG) III from the non-climacteric melon accession PI 161375 in the, also non-climacteric cultivar, "Piel de Sapo" genetic background.
View Article and Find Full Text PDFPLoS One
May 2013
Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E.
View Article and Find Full Text PDFPLoS One
January 2013
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.
A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics.
View Article and Find Full Text PDFArabidopsis Book
August 2012
Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain.
Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels.
View Article and Find Full Text PDFPlant Signal Behav
April 2012
Departament de Genètica Molecular, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
Plants need to accurately adjust their development after germination in the underground darkness to ensure survival of the seedling, both in the dark and in the light upon reaching the soil surface. Recent studies have established that the photoreceptors phytochromes and the bHLH phytochrome interacting factors PIFs regulate seedling development to adjust it to the prevailing light environment during post-germinative growth. However, complete understanding of the downstream regulatory network implementing these developmental responses is still lacking.
View Article and Find Full Text PDFMol Plant Pathol
August 2012
Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193, Barcelona, Spain.
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Their association benefits the host plant by improving nutrition, mainly phosphorus nutrition, and by providing increased capability to cope with adverse conditions. In this study, we investigated the transcriptional changes triggered in rice leaves as a result of AM symbiosis, focusing on the relevance of the plant defence response.
View Article and Find Full Text PDF