192 results match your criteria: "a Centre "Bioengineering" RAS[Affiliation]"

The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers.

View Article and Find Full Text PDF

Bacteria with the simplest system for solar energy absorption and conversion use various types of light-harvesting complexes for these purposes. Light-harvesting complex 2 (LH2), an important component of the bacterial photosynthetic apparatus, has been structurally well characterized among purple non-sulfur bacteria. In contrast, so far only one high-resolution LH2 structure from sulfur bacteria is known.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of forecasting future health issues in the USA for effective planning and public awareness regarding disease and injury burdens.
  • It describes the methodology for predicting life expectancy, cause-specific mortality, and disability-adjusted life-years (DALYs) from 2022 to 2050 using the Global Burden of Diseases framework.
  • The forecasting includes various scenarios to assess the potential impacts of health risks and improvements across the country, focusing on demographic trends and health-related risk factors.
View Article and Find Full Text PDF

Dynamic pathogen exposure may impact the immunological response to SARS-CoV-2 (SCV2). One potential explanation for the lack of severe SCV2-related morbidity and mortality in Southeast Asia is prior exposure to related betacoronaviruses. Recent discoveries of SCV2-related betacoronaviruses from horseshoe bats (Rhinolophus sinicus) in Thailand, Laos, and Cambodia suggest the potential for bat-to-human spillover exposures in the region.

View Article and Find Full Text PDF

Orthoflaviviruses are arthropod-borne viruses that are transmitted by mosquitoes or ticks and cause a range of significant human diseases. Among the most important tick-borne orthoflaviviruses (TBFVs) is tick-borne encephalitis virus (TBEV), which is endemic in Eurasia, and Powassan virus, which is endemic in Asia and North America. There is a significant controversy regarding species assignment in the tick-borne encephalitis virus complex due to the complex phylogenetic, serological, ecological, and pathogenetic properties of viruses.

View Article and Find Full Text PDF

In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied strokes from 1990 to 2021 to understand how many people get them and how they are affected around the world.
  • In 2021, strokes caused about 7.3 million deaths and were a major cause of health problems, especially in specific regions like Southeast Asia and Oceania.
  • There are differences in stroke risks based on where people live and their age, and some areas actually saw more strokes happening since 2015.
View Article and Find Full Text PDF

Unlabelled: Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging.

View Article and Find Full Text PDF

Dietary phospholipids (PLs) are promising supplements that are commonly found as natural food ingredients and emulsifier additives. The present study aimed to evaluate the effect of major PLs found in food supplements on social behavior in mice. In this study, the effect of short-term high dietary PL content was studied in terms of social odor discrimination and social interactions with male and female intruders in male mice.

View Article and Find Full Text PDF

Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects.

View Article and Find Full Text PDF

Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues.

View Article and Find Full Text PDF

Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives.

Pathol Res Pract

May 2024

Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK. Electronic address:

Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the diploid parthenogenetic lizard Darevskia unisexualis, which is a hybrid derived from two parental species, offering insights into sexual and asexual reproduction mechanisms.
  • - Researchers conducted a detailed analysis of the pericentromeric DNA sequences of the parental lizards, revealing unique species-specific sequences that helped create fluorescent probes to distinguish parental chromosomes in the hybrid.
  • - The team developed a computational method to find species-specific fluorescent probes for studying pericentromeres, laying the groundwork for future research on hybrids in both nature and labs.
View Article and Find Full Text PDF

While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E.

View Article and Find Full Text PDF

The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia.

Pathol Res Pract

February 2024

College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK. Electronic address:

Article Synopsis
  • - Chronic Myeloid Leukemia (CML) is caused by the BCR-ABL gene fusion from a chromosome translocation, leading to overactive tyrosine kinase (Abl protein) that disrupts normal cell cycle regulation.
  • - Imatinib is a drug that effectively targets the BCR-ABL tyrosine kinase, but resistance can develop due to mutations, complicating treatment.
  • - Ongoing research focuses on overcoming resistance and developing new treatment strategies, highlighting the importance of BCR-ABL as a key biomarker and therapeutic target in CML.
View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation.

View Article and Find Full Text PDF

Polysaccharide Composite Alginate-Pectin Hydrogels as a Basis for Developing Wound Healing Materials.

Polymers (Basel)

January 2024

Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy.

This article presents materials that highlight the bioengineering potential of polymeric systems of natural origin based on biodegradable polysaccharides, with applications in creating modern products for localized wound healing. Exploring the unique biological and physicochemical properties of polysaccharides offers a promising avenue for the atraumatic, controlled restoration of damaged tissues in extensive wounds. The study focused on alginate, pectin, and a hydrogel composed of their mixture in a 1:1 ratio.

View Article and Find Full Text PDF

SARS-CoV-2 NSP14 governs mutational instability and assists in making new SARS-CoV-2 variants.

Comput Biol Med

March 2024

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. Electronic address:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification.

View Article and Find Full Text PDF

Upstream open reading frames (uORFs) are a frequent feature of eukaryotic mRNAs. Upstream ORFs govern main ORF translation in a variety of ways, but, in a nutshell, they either filter out scanning ribosomes or allow downstream translation initiation via leaky scanning or reinitiation. Previous reports concurred that eIF4G2, a long-known but insufficiently studied eIF4G1 homologue, can rescue the downstream translation, but disagreed on whether it is leaky scanning or reinitiation that eIF4G2 promotes.

View Article and Find Full Text PDF

Global Burden of Cardiovascular Diseases and Risks, 1990-2022.

J Am Coll Cardiol

December 2023

Department of Health Metrics Sciences, Institute for Health Metrics and Evaluation, School of Medicine, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA. Electronic address:

View Article and Find Full Text PDF

The primary objective of this study was to enhance the effectiveness of the protease inhibitor antiretroviral drug by designing a novel delivery system using carboxylated multiwalled carbon nanotubes (COOH-MWCNTs). To achieve this, Fosamprenavir calcium (FPV), a prodrug of amprenavir known for inhibiting the proteolytic cleavage of immature virions, was selected as the protease inhibitor antiretroviral drug, and loaded onto COOH-MWCNTs using a direct loading method. The structural specificity of the drug-loaded MWCNTs, the percent entrapment efficiency, and in vitro drug release were rigorously evaluated for the developed formulation, referred to as FPV-MWCNT.

View Article and Find Full Text PDF

Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials.

View Article and Find Full Text PDF

We present a major update of the HOCOMOCO collection that provides DNA binding specificity patterns of 949 human transcription factors and 720 mouse orthologs. To make this release, we performed motif discovery in peak sets that originated from 14 183 ChIP-Seq experiments and reads from 2554 HT-SELEX experiments yielding more than 400 thousand candidate motifs. The candidate motifs were annotated according to their similarity to known motifs and the hierarchy of DNA-binding domains of the respective transcription factors.

View Article and Find Full Text PDF
Article Synopsis
  • * The authors introduce PROSTATA, a new predictive model that outperforms existing neural network solutions due to its innovative architecture and a high-quality training dataset.
  • * PROSTATA is available for use and implementation at the provided URLs, offering a promising tool for future protein stability assessments.
View Article and Find Full Text PDF

Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail.

View Article and Find Full Text PDF