85 results match your criteria: "a CSIR-National Botanical Research Institute (CSIR-NBRI) ; Lucknow[Affiliation]"

Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour.

View Article and Find Full Text PDF

Galactinol synthase 4 requires sulfur assimilation pathway to provide tolerance towards arsenic stress under limiting sulphur condition in Arabidopsis.

J Hazard Mater

December 2024

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002,  India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:

Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.

View Article and Find Full Text PDF

Nutrient deficiency intensifies drought and salinity stress on rice growth. Bacillus amyloliquefaciens inoculation provides resilience through modulation in metabolic and gene regulation to enhance growth, nutrient uptake, and stress tolerance. Soil nutrient deficiencies amplify the detrimental effects of abiotic stresses, such as drought and salinity, creating substantial challenges for overall plant health and crop productivity.

View Article and Find Full Text PDF
Article Synopsis
  • Research confirms that specific plant growth-promoting rhizobacteria (PGPR) strains, such as NBRI 12 M and others, play key roles in helping plants grow and cope with salt stress.
  • Whole-genome analysis of these strains revealed various genes responsible for promoting growth, metabolizing nutrients, and enhancing salinity tolerance through mechanisms like sporulation and motility.
  • NBRI 12 M, in particular, significantly improved plant growth metrics under salt stress while reducing levels of certain defense enzymes, indicating its effectiveness in supporting plant health.
View Article and Find Full Text PDF

Bacillus amyloliquefaciens modulate autophagy pathways to control Rhizoctonia solani infection in rice.

Plant Physiol Biochem

January 2025

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Article Synopsis
  • The fungus Rhizoctonia solani poses a serious threat to rice crops by causing sheath blight disease; this study explores the use of Bacillus amyloliquefaciens (SN13), a beneficial rhizobacteria, as a biological control agent for infected rice variety Swarna.
  • Untreated rice plants show significant damage from R. solani, while SN13 treatment effectively reduces fungal growth and improves plant health, indicating its potential as a protective agent.
  • The research findings highlight that SN13 triggers autophagy in rice plants, enhances defense gene expression, and increases the presence of defense-related metabolites, illustrating its role in boosting rice immunity against fungal infections.
View Article and Find Full Text PDF
Article Synopsis
  • Ferric Reductase Oxidase (FRO) genes are crucial for iron uptake in plants, and a study identified and analyzed 65 FRO homologs in four cotton species, revealing conserved functions and structures of these proteins.
  • *The research showed that FRO proteins are mainly localized to the plasma membrane and highlighted their evolutionary patterns through phylogenetic analysis, as well as variations in gene structure and chromosomal distribution.
  • *Additionally, expression profiling indicated that GhFRO interacts with specific proteins for metal ion transport and showed significant downregulation in response to stress conditions, offering valuable insights into iron homeostasis and stress adaptations in cotton.
View Article and Find Full Text PDF

Pseudomonas putida triggers phosphorus bioavailability and P-transporters under different phosphate regimes to enhance maize growth.

Plant Physiol Biochem

December 2024

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

The decline of available phosphorus in soil due to anthropogenic activities necessitates utilizing soil microorganisms that influence soil phosphorus levels. However, the specific mechanisms governing their interaction in Zea mays under diverse phosphate regimes remain largely unknown. The present study investigated the dynamics of phosphorus solubilization and the impact of organic acid supplementation in combination with the beneficial rhizobacterium Pseudomonas putida (RA) on maize growth under phosphorus-limiting and unavailable conditions.

View Article and Find Full Text PDF

Gloriosa superba L., a medicinally important plant, is often affected by leaf blight disease caused by Alternaria alternata, which compromises its productivity. This study explores the protective effects of Bacillus australimaris endophyte (NBRI GS34), demonstrating that its inoculation not only inhibits the disease but also promotes plant growth and increases the concentrations of bioactive metabolites.

View Article and Find Full Text PDF

Unlabelled: This study investigates the response of ethyl methanesulfonate-derived twenty mutant lines of , along with the parent type Wagad cultivar, to drought stress. Physiological parameters, such as relative water content (RWC), net photosynthesis (), stomatal conductance ( ), transpiration rate (), and water use efficiency (), were examined. The mutant line mut_3219 exhibited superior drought tolerance, maintaining high RWC and water retention capacity, with minimal reductions in , , and , leading to higher than parent type and other mutant lines.

View Article and Find Full Text PDF

ELONGATED HYPOCOTYL 5 regulates steroidal glycoalkaloid biosynthesis and fungal tolerance in tomato.

Plant Physiol

October 2024

Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute (CSIR-NBRI), Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India.

Tomato (Solanum lycopersicum L.) is rich in nutrients and has been an important target for enhancing the accumulation of various metabolites. Tomato also contains cholesterol-derived molecules, steroidal glycoalkaloids (SGAs), which contribute to pathogen defense but are toxic to humans and considered antinutritional compounds.

View Article and Find Full Text PDF

Plants adapt to changing environmental conditions by adjusting their growth physiology. Nitrate (NO3-) and ammonium (NH4+) are the major inorganic nitrogen forms for plant uptake. However, high NH4+ inhibits plant growth, and roots undergo striking changes, such as inhibition of cell expansion and division, leading to reduced root elongation.

View Article and Find Full Text PDF

HY5 and COP1 function antagonistically in the regulation of nicotine biosynthesis in Nicotiana tabacum.

Plant Physiol Biochem

September 2024

Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation.

View Article and Find Full Text PDF

HY5 and PIF antagonistically regulate HMGR expression and sterol biosynthesis in Arabidopsis thaliana.

Plant Sci

September 2024

Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002,  India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Picnic Spot Road, Lucknow 226015, India. Electronic address:

Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear.

View Article and Find Full Text PDF

A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis.

Plant Physiol

October 2024

Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.

ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development.

View Article and Find Full Text PDF

Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium.

View Article and Find Full Text PDF

Isoprenyl diphosphate synthases of terpenoid biosynthesis in rose-scented geranium (Pelargonium graveolens).

Plant Physiol Biochem

May 2024

Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, 226001, India. Electronic address:

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis.

View Article and Find Full Text PDF

Light-dependent expression and accumulation of miR408-encoded peptide, miPEP408, is regulated by HY5 in Arabidopsis.

Biochem Biophys Res Commun

April 2024

CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Recent studies propose that primary transcripts of miRNAs (pri-miRNAs) contain small Open Reading Frames (ORFs) capable of encoding miRNA-encoded peptides (miPEPs). These miPEPs can function as transcriptional regulators for their corresponding pri-miRNAs, ultimately enhancing mature miRNA accumulation. Notably, pri-miR408 encodes the functional peptide miPEP408, regulating expression of miR408 and its target genes, providing plant tolerance to stresses.

View Article and Find Full Text PDF

Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions.

View Article and Find Full Text PDF

Paenibacillus lentimorbus reprograms auxin signaling and metabolic pathways for modulating root system architecture to mitigate nutrient deficiency in maize crops. The arable land across the world is having deficiency and disproportionate nutrients, limiting crop productivity. In this study, the potential of plant growth-promoting rhizobacteria (PGPR) viz.

View Article and Find Full Text PDF

Aims: The study aimed to determine the pathogenicity of Fusarium species currently prevalent in tomato fields having history of chemical fungicide applications and determine the bio-efficacy of Bacillus subtilis NBRI-W9 as a potent biological control agent.

Methods And Results: Fusarium was isolated from surface-sterilized infected tomato plants collected from fields. Pathogenicity of 30 Fusarium isolates was determined by in vitro and in vivo assays.

View Article and Find Full Text PDF

Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules.

View Article and Find Full Text PDF

HY5-dependent light-mediated regulation of galactinol synthase gene, AtGolS1, modulates galactinol biosynthesis in Arabidopsis.

Biochem Biophys Res Commun

February 2024

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India. Electronic address:

The Raffinose Family of Oligosaccharides (RFOs), including Galactinol, Raffinose, and Stachyose, are pivotal carbohydrates with significant roles in abiotic stress tolerance and growth within dynamic environments. Plant development is profoundly influenced by light, a major environmental signal. Despite this, the interconnections between the biosynthesis of secondary sugars and light signaling have remained unexplored.

View Article and Find Full Text PDF

The hidden harmony: Exploring ROS-phytohormone nexus for shaping plant root architecture in response to environmental cues.

Plant Physiol Biochem

January 2024

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity.

View Article and Find Full Text PDF

Mutation in shoot-to-root mobile transcription factor, ELONGATED HYPOCOTYL 5, leads to low nicotine levels in tobacco.

J Hazard Mater

March 2024

CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India. Electronic address:

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels.

View Article and Find Full Text PDF