70,158 results match your criteria: "Zhengzhou Universities; Henan Province Key Subject of Clinical Medicine[Affiliation]"

A DNA origami-based enzymatic cascade nanoreactor for chemodynamic cancer therapy and activation of antitumor immunity.

Sci Adv

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Chemodynamic therapy (CDT) is a promising and potent therapeutic strategy for the treatment of cancer. We developed a DNA origami-based enzymatic cascade nanoreactor (DOECN) containing spatially well-organized Au nanoparticles and ferric oxide (FeO) nanoclusters for targeted delivery and inhibition of tumor cell growth. The DOECN can synergistically promote the generation of hydrogen peroxide (HO), consumption of glutathione, and creation of an acidic environment, thereby amplifying the Fenton-type reaction and producing abundant reactive oxygen species, such as hydroxyl radicals (•OH), for augmenting the CDT outcome.

View Article and Find Full Text PDF

Interlayer and defect engineering significantly affects the electrical conductivity and electromagnetic interference (EMI) shielding of TiCT MXene. Previous studies have prioritized the size of the intercalant over its synergy with chemical affinity, limiting the elucidation of the intercalation mechanism and the precise control of the interlayer spacing (spacing). Herein, we synthesize MXene aerogels with a tunable spacing and defect density using a series of amine molecules of different sizes and chemical affinities as intercalants and cross-linkers.

View Article and Find Full Text PDF

Aqueous Alkaline Zinc-Iodine Battery with Two-Electron Transfer.

ACS Nano

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I element cathode and thermodynamically unstable reaction products.

View Article and Find Full Text PDF

CHI-KAT8i5 suppresses ESCC tumor growth by inhibiting KAT8-mediated c-Myc stability.

Cell Rep

January 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000 Henan, China; China-US (Henan) Hormel Cancer Institute, No. 127, Zhengzhou 450000 Henan, China; The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou 450000 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000 Henan, China. Electronic address:

The integrated analysis of histone modifier enzymes in solid tumors, especially in esophageal squamous cell carcinoma (ESCC), is still inadequate. Here, we investigate the expression levels of histone modifier enzymes in ESCC tissues. Notably, KAT8 (lysine acetyltransferase 8) is identified as a prognostic and therapeutic biomarker in ESCC.

View Article and Find Full Text PDF

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

FP-YOLOv8: Surface Defect Detection Algorithm for Brake Pipe Ends Based on Improved YOLOv8n.

Sensors (Basel)

December 2024

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China.

To address the limitations of existing deep learning-based algorithms in detecting surface defects on brake pipe ends, a novel lightweight detection algorithm, FP-YOLOv8, is proposed. This algorithm is developed based on the YOLOv8n framework with the aim of improving accuracy and model lightweight design. First, the C2f_GhostV2 module has been designed to replace the original C2f module.

View Article and Find Full Text PDF

To address the difficulty in detecting workers' violation behaviors in electric power construction scenarios, this paper proposes an innovative method that integrates knowledge reasoning and progressive multi-level distillation techniques. First, standards, norms, and guidelines in the field of electric power construction are collected to build a comprehensive knowledge graph, aiming to provide accurate knowledge representation and normative analysis. Then, the knowledge graph is combined with the object-detection model in the form of triplets, where detected objects and their interactions are represented as subject-predicate-object relationship.

View Article and Find Full Text PDF

YOLO-BOS: An Emerging Approach for Vehicle Detection with a Novel BRSA Mechanism.

Sensors (Basel)

December 2024

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China.

In intelligent transportation systems, accurate vehicle target recognition within road scenarios is crucial for achieving intelligent traffic management. Addressing the challenges posed by complex environments and severe vehicle occlusion in such scenarios, this paper proposes a novel vehicle-detection method, YOLO-BOS. First, to bolster the feature-extraction capabilities of the backbone network, we propose a novel Bi-level Routing Spatial Attention (BRSA) mechanism, which selectively filters features based on task requirements and adjusts the importance of spatial locations to more accurately enhance relevant features.

View Article and Find Full Text PDF

This study contributes to improving the accuracy of temperature measurements with a platinum resistance temperature detector (RTD) by proposing techniques to mitigate the error due to self-heating by the operating current. An assessment of the measurement errors of the platinum RTD was carried out to study ways to improve their accuracy. High accuracy can be achieved by individual calibration using a voltage divider circuit to measure resistance, the substitution method, and the transitional measure.

View Article and Find Full Text PDF

: Phyllanthus emblica is a medicinal and edible plant from the Euphorbiaceae family, notable for its rich content of polyphenols and flavonoids, which provide significant antioxidant properties. To exploit the full antioxidant potential of Phyllanthus emblica, this study developed a hydrogel system incorporating polyvinyl alcohol (PVA) and carboxymethyl cellulose sodium (CMC-Na), integrated with Phyllanthus emblica extract, for the purpose of wound healing. : The extraction process of active ingredients of Phyllanthus emblica was optimized and assessed the antioxidant composition and activity of the extract.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses.

Plants (Basel)

December 2024

Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis.

View Article and Find Full Text PDF

In order to reveal the effects of microplastics (MPs) on the growth and rhizosphere soil environmental effects of wheat ( L.), three microplastic types (polypropylene MPs (PP-MPs), high-density polyethylene MPs (HDPE-MPs), and polylactic acid MPs (PLA-MPs)), particle sizes (150, 1000, and 4000 μm), and concentrations (0.1, 0.

View Article and Find Full Text PDF

The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.

View Article and Find Full Text PDF

Rhizosphere microorganisms play an important role in the health and development of root systems. Investigating the microbial composition of the rhizosphere is central to understanding the inter-root microbial function of under various cultivation conditions. To complement the metagenomic study of the rhizosphere, here, an amplicon-based metagenomic survey of bacteria and fungi was selected as a practical approach to analyzing the abundance, diversity index, and community structure of rhizosphere bacteria and fungi, as well as to study the effects of different cultivation methods on rhizosphere microbial diversity.

View Article and Find Full Text PDF

Corn leaf blight and stem rot caused by are significant diseases that severely affect corn crops. Glycosyltransferases (GTs) catalyze the transfer of sugar residues to diverse receptor molecules, participating in numerous biological processes and facilitating functions ranging from structural support to signal transduction. This study identified 101 genes through functional annotation of the TZ-3 genome.

View Article and Find Full Text PDF

Novel Nuclease MbovP701 with a Yqaj Domain Is Interrelated with the Growth of .

Microorganisms

December 2024

National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.

() is characterized by a reduced genomic size and limited synthetic capacity, including the inability to synthesize nucleotides de novo, relies on nucleases for nutrient acquisition and survival. A number of nucleases have been implicated in pathogenicity, facilitating substrate degradation and contributing to DNA repair mechanisms that enhance bacterial persistence. The present study confirmed that the T5.

View Article and Find Full Text PDF

Biofilm formation by is a major cause of secondary food contamination, leading to significant economic losses. While rhamnolipids (RLs) have shown effectiveness against , their ability to remove biofilms is limited when used alone. Ultrasound (US) is a non-thermal sterilization technique that has been found to enhance the delivery of antimicrobial agents, but it is not highly effective on its own.

View Article and Find Full Text PDF

This study investigates the mechanisms driving maize compensatory growth upon post-drought, to reveal how the root's original cytokinins are regulated by the two-fold roles of heterotrophic bacteria with ammonia-oxidizing (HAOB) capabilities. The HAOB' dual roles encompass influencing root cytokinin synthesis and transport through nitrification and a direct pathway. Experiment 1 involved introducing the application of varying amounts of NO to the roots to examine how nitrification affects cytokinin roots-to-leaves transport.

View Article and Find Full Text PDF

: As one of the important interventions to alleviate anthracycline-related cardiotoxicity (ARC), the safety assessment of dexrazoxane in clinical practice is particularly important. This study aims to evaluate the actual efficacy and potential adverse effects of dexrazoxane in clinical practice by analyzing the reports of adverse events (AEs) related to the combination with dexrazoxane and anthracyclines. : We utilized four disproportionality analysis methods to analyze AE reports of the combination with dexrazoxane and anthracyclines in the Food and Drug Administration Adverse Event Reporting System (FAERS) database from the third quarter of 2014 to the first quarter of 2024.

View Article and Find Full Text PDF

Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the potential to complete the rough and finish machining of TMCs in succession. However, in the rough machining stage, the bottom of the slot becomes concave due to the inevitable stray corrosion, leading to poor flatness, which increases the machining allowance for subsequent finish machining.

View Article and Find Full Text PDF

A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.

View Article and Find Full Text PDF

This paper introduces an alternative method for determining the shear strength parameters of concrete materials, specifically the rectangular section splitting method, to ascertain the shear strength parameters of concrete materials. Based on the Mohr-Coulomb failure criterion, formulas for calculating the cohesion (c) and the angle of internal friction (φ) of concrete materials are derived. Numerical simulation is employed to fit and solve for the coefficients involved in the formulas.

View Article and Find Full Text PDF

High-entropy alloys (HEAs) with ultrafine grained and high strength can be prepared by mechanical alloying (MA) followed by sintering. Therefore, MA, as a unique solid powder processing method, has many effects on the microstructures and mechanical properties of the sintered bulk HEAs. This work focused on the alloying behavior, morphology, and phase evolution of FeCrNiAl (x = 1.

View Article and Find Full Text PDF

Tin-based perovskite has emerged as an excellent luminescent material due to its non-toxicity and narrow bandgap compared to lead-based perovskite. However, its tin ions are easily oxidized by oxygen, which leads to increased vacancy defects and poor crystallinity, presenting a significant challenge in obtaining high-quality perovskite films. In this context, we introduced an approach by synergistically adding SnF and tin powder into the precursor solution to enhance the antioxidation of Sn ions.

View Article and Find Full Text PDF

Advances in Research on Southern Corn Rust, a Devasting Fungal Disease.

Int J Mol Sci

December 2024

Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Southern corn rust (SCR), caused by the obligate biotrophic fungus Underw., represents one of the most devastating threats to maize production, potentially resulting in yield losses exceeding 50%. Due to global climate change and cropping practices, epiphytotics of SCR have been increasingly reported, and are progressively spreading from tropical and subtropical maize growing areas to higher latitude areas.

View Article and Find Full Text PDF