18 results match your criteria: "Zakir Husain College (University of Delhi)[Affiliation]"

A novel, tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[12,0,0(7-12)] cosa-1(22),2,5,7,9,11,13,16,18,20-decaene(L), has been synthesized and characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies.

View Article and Find Full Text PDF

Nanoparticles of Al(0) were synthesized by solution reduction process successfully. The influence of parameters on the size of Al(0) nanoparticles were studied and the referential process parameters were obtained. The morphology and structure of the synthesized Al(0) nanoparticles were characterized by Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), QELS Data and Infrared Spectroscopy (IR).

View Article and Find Full Text PDF

Complexes of Cu(II) and Ni(II) of the composition [M(L)X] [where M=Ni(II), Cu(II) and X=Cl-, NO3-, CH3COO-] were synthesized with 1,5-dioxo-9,10-diaza-3,ol-tribenzo-(7,6,10,11,14,15) peptadecane, a N2O2 macrocyclic ligand. The complexes were characterized by elemental analysis, molar conductance measurements, UV-vis, IR, 1H NMR, 13C NMR, EPR and molecular modeling studies. All the complexes are non-electrolyte in nature.

View Article and Find Full Text PDF

Palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes of general stoichiometry [PdL]Cl(2), [PtL]Cl(2), [Ru(L)Cl(2)]Cl and [Ir(L)Cl(2)]Cl are synthesized with a tetradentate macrocyclic ligand, derived from 2,6-diaminopyridine with 3-ethyl 2,4-pentanedione. Ligand was characterized on the basis of elemental analyses, IR, mass, and (1)H NMR and (13)C NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, electronic spectral techniques and thermal studies.

View Article and Find Full Text PDF

Mn(II), Co(II), Ni(II) and Cu(II) complexes have been synthesized with 22 and 24 membered tetramide macrocyclic ligands viz; 1,9,12,20-tetraaza-2,8,13,19-tetraone-5,16-dithiacyclodocosane [L(1)] and 1,9,13,21-tetraaza-2,8,14,20-tetraone-5,17-dithiacyclotetracosane [L(2)] and characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic EPR spectral studies and electrochemical properties. The molar conductance of all the complexes in DMSO solution is corresponding to 1:2 electrolyte. Thus these complexes may be formulated as [M(L')]Cl(2) [where M = Mn(II), Co(II), Ni(II) and Cu(II) L' = L(1) and L(2)].

View Article and Find Full Text PDF

The synthesis of novel bimetallic Cu(II) complexes with general stoichiometry [Cu(2)(H(2)L)X(2)(H(2)O)(2)], [Cu(2)(H(2)L)(CH(3)COO)(2)] and [Cu(2)(H(2)L)SO(4)(H(2)O)(2)] (where H(2)L=dideprotonated ligand and X=NO(3)(-) and Cl(-)) derived from tetradentate ligand obtained by the condensation of 1,4-diformyl piperazine with carbohydrazide has been discussed. The complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, mass, UV, EPR spectral studies and thermogravimetric analyses. The value of magnetic moments indicates that the complexes are paramagnetic and show the antiferromagnetic interaction between the two metal centres.

View Article and Find Full Text PDF

Complexes of transition metals have been synthesized with hexadentate ligand (2,6-bis(((2-mercaptophenyl)thio)methyl)pyridinato)metal(II). These complexes have been synthesized via the two step template reaction by using the benzene dithiol, 2,6-bis(chloro)methyl pyridine and corresponding metal salt as key raw materials. The structures of the complexes have been elucidated on the basis of elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies.

View Article and Find Full Text PDF

Palladium(II) and platinum(II) complexes having the general composition [M(L)] X2 (where M=Pd(II) and Pt(II), L=3,4,12,13-tetraphenyl-2,5,11,14,19,20-hexaaza tricyclo [13.3.1.

View Article and Find Full Text PDF

Ni(II) and Cu(II) complexes having the general composition [M(L)(2)X(2)] [where L=2-pyridinecarboxaldehyde thiosemicarbazone, M=Ni(II) and Cu(II), X=Cl(-), NO(3)(-) and 1/2 SO(4)(2-)] have been synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, EPR and electronic spectral studies. The magnetic moment measurements of the complexes indicate that all the complexes are of high-spin type.

View Article and Find Full Text PDF

An attempt has been made to develop a highly selective Cu2+-ion selective electrode based on a poly(vinyl chloride) based sensor using 1,2,5,6,8,11-hexaazacyclododeca-7,12-dione-2,4,8,10-tetraene as ionophore with 61.5% DBP in the presence of 29% PVC, 4.5% ionophore and 5% NaTBP as an anion excluder.

View Article and Find Full Text PDF

A poly(vinyl chloride)-based membrane composed of dithio-tetraaza macrocyclic compound as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and nitrobenzene (NB) as plasticizer was prepared and investigated as a Th(IV)-selective electrode. The electrode exhibits a Nernstian slope of 14.2 +/- 0.

View Article and Find Full Text PDF

Copper(II) complexes of isatin-3,2'-quinolyl-hydrazones of the type [Cu(L)X] (where X=Cl(-), Br(-), NO(3)(-), CH(3)COO(-) and ClO(4)(-)] and their adducts Cu(L)X.2Y [where Y=pyridine or dioxane and X=Cl(-), Br(-), NO(3)(-) and ClO(4)(-)] have been synthesized under controlled experimental conditions and characterized by using the modern spectroscopic and physicochemical techniques viz. IR, electronic, EPR, elemental analysis, magnetic moment susceptibility measurements and molar conductance, etc.

View Article and Find Full Text PDF

New macrocyclic ligands were prepared and chromium(III) stability in the marcrocyclic cavities are reported. Two of them have four-coordinate [N2O2]:[N4], third one has five-coordinate [N2O2S] and the last one has six-coordinate [N4O2] donor macrocyclic cavities. These macrocyclic ligands have been synthesized with their chromium(III) complexes which have mononuclear nature and their structural features have been discussed on the basis of: elemental analysis, magnetic moment, electronic, IR, 1H NMR, and EPR spectral studies.

View Article and Find Full Text PDF

A comparative investigation of the interaction of two pyrrole-substituted, mixed oxygen and nitrogen donor, macrocycles ligands have been designed and their coordination interaction with cobalt(II) is studied. Cobalt(II) salts combine with a tetradentate and hexadentate macrocyclic nitrogen/oxygen donor ligands and formed novel cobalt(II) complexes which are characterized by elemental analysis, molar conductance, magnetic moments, mass, (1)H NMR, IR, electronic and EPR spectral studies. At the room temperature magnetic moment for cobalt(II) complexes lie in the range 4.

View Article and Find Full Text PDF

Aza-macrocyclic complexes have gained importance because of their pharmacological properties. Hexa-aza-macrocycles containing glutarimide efficiently coordinate as hexa-dentate ligand, to give complexes of Cu(II) possessing tetragonal structure and Mn(II), Co(II) and Ni(II) metal ions that are essentially octahedral. Spectroscopic, and chemical characterizations of these systems are presented in this article.

View Article and Find Full Text PDF

Spectroscopic evaluation of manganese(II) complexes derived from semicarbazones and thiosemicarbazones.

Spectrochim Acta A Mol Biomol Spectrosc

September 2005

Department of Chemistry, Zakir Husain College (University of Delhi), JLN-Marg, New Delhi 110002, India.

Manganese(II) complexes having the general composition Mn(L)2X2 [where L=isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X=Cl-, 1/2SO(4)2-] have been synthesized. All the complexes were characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI-mass, 1H NMR, IR, EPR and electronic spectral studies. All the complexes show magnetic moments corresponding to five unpaired electrons.

View Article and Find Full Text PDF

A novel macrocyclic Schiff base ligand (2,5,9,12,14,18-hexaoxo-7,16-dithia-1,3,4,10,11,13-hexaazacycloocta-decane (H6L) with N4S2 coordinating sites was prepared by the reaction of the semicarbazide and thiodiglycolic acid. The transition metal complexes with macrocyclic ligand were synthesized and characterized by elemental analyses, magnetic susceptibility measurements, molar conductance, IR, electronic, and EPR spectral studies. Mass, 1H NMR and IR spectral techniques suggest the structural features of macrocyclic ligand.

View Article and Find Full Text PDF

A new macrocylic Schiff base 1,2,5,6,8,11-hexaazacyclododeca-7,12-dithione-2,4,8,10-tetraene(H(2)L(4)) containing thiosemicarbazone moiety is readily prepared and characterized for the first time with fairly good yield. Macrocylic ligand (H(2)L(4)) is prepared from the mesocyle 6-ethoxy-4-thio-2,3,5-triazine(H(2)L(3)) in ethanol with copper chloride acting as template using high dilution technique. The complexes of macrocylic ligand with a general composition M(H(2)L(4))X(2) [where M=Cu(II) or Ni(II); H(2)L(4)=1,2,5,6,8,11-hexaazacyclo dodeca-7,12-dithione-2,4,8,10-tetraene; X= Cl(-), NO(3)(-), (1)/(2)SO(4)(2-)] and ML(4) (where metal salt used to synthesize complex is copper acetate and nickel thiocyanate) have been synthesized.

View Article and Find Full Text PDF