117 results match your criteria: "Yale Systems Biology Institute[Affiliation]"

Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum.

Dev Cell

November 2024

Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA. Electronic address:

Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns.

View Article and Find Full Text PDF

The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby.

Proc Natl Acad Sci U S A

October 2024

Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.

Article Synopsis
  • The first mammals that gave birth to live young had short pregnancies that involved some inflammation between the mother and the baby.
  • Many marsupials, like kangaroos and wallabies, still keep this short pregnancy style, but their way of handling inflammation is different from other mammals called eutherians.
  • In wallabies, they don't show a strong inflammatory reaction at the start of pregnancy, allowing them to have a longer gestation process compared to other marsupials.
View Article and Find Full Text PDF

Interferon- and infectious diseases: Lessons and prospects.

Science

April 2024

Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.

Article Synopsis
  • Infectious diseases remain a significant cause of death, highlighting the need for improved prevention strategies beyond just new medicines and vaccines.
  • A key player in the immune response to infections is interferon- (IFN-), a protein produced by lymphocytes that activates macrophages to enhance host defense.
  • Recent research has renewed interest in IFN- biology, prompting a reassessment of its role and potential as a treatment against widespread microbial infections.
View Article and Find Full Text PDF

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells.

View Article and Find Full Text PDF

The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles.

View Article and Find Full Text PDF

Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules.

Biology (Basel)

November 2023

Center for Wireless Information Processing, Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA.

A cell constantly receives signals and takes different fates accordingly. Given the uncertainty rendered by signal transduction noise, a cell may incorrectly perceive these signals. It may mistakenly behave as if there is a signal, although there is none, or may miss the presence of a signal that actually exists.

View Article and Find Full Text PDF

Normalizing need not be the norm: count-based math for analyzing single-cell data.

Theory Biosci

February 2024

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.

Counting transcripts of mRNA are a key method of observation in modern biology. With advances in counting transcripts in single cells (single-cell RNA sequencing or scRNA-seq), these data are routinely used to identify cells by their transcriptional profile, and to identify genes with differential cellular expression. Because the total number of transcripts counted per cell can vary for technical reasons, the first step of many commonly used scRNA-seq workflows is to normalize by sequencing depth, transforming counts into proportional abundances.

View Article and Find Full Text PDF

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ).

View Article and Find Full Text PDF

Stress, harshness, and evolutionary history.

Trends Ecol Evol

October 2023

Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, CT 06520, USA.

View Article and Find Full Text PDF

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines.

View Article and Find Full Text PDF

Genetic diseases: How the noise fits in.

Curr Biol

March 2023

Biomedical Engineering Department, Yale Systems Biology Institute, Yale University, New Haven, CT 06520, USA. Electronic address:

Many disease-causing mutations can have mild or no effects in some people. This incomplete phenotype penetrance phenomenon is still poorly understood, but model animal studies now show that it is stochastic, with the outcome akin to flipping a coin. These findings can affect how genetic diseases are understood and treated.

View Article and Find Full Text PDF

First Organoid Intelligence (OI) workshop to form an OI community.

Front Artif Intell

February 2023

Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.

Article Synopsis
  • The human brain is an incredibly efficient computing system, operating on just 20 watts of power, and is unmatched in processing information and learning.
  • Recent advancements in stem cell technology have led to the creation of three-dimensional brain organoids that better mimic human brain functions, paving the way for Organoid Intelligence (OI).
  • The first Organoid Intelligence Workshop at Johns Hopkins University aimed to foster a community focused on establishing OI as a new discipline, exploring its potential to revolutionize fields like computing, neuroscience, and drug development.
View Article and Find Full Text PDF

Background: Intraductal papillary mucinous neoplasms (IPMNs), a type of cystic pancreatic cancer (PC) precursors, are increasingly identified on cross-sectional imaging and present a significant diagnostic challenge. While surgical resection of IPMN-related advanced neoplasia, i.e.

View Article and Find Full Text PDF

Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation.

View Article and Find Full Text PDF

Epigenetics as a mediator of plasticity in cancer.

Science

February 2023

Yale Systems Biology Institute and Department of Biomedical Engineering, Yale University, West Haven, CT 06516, USA.

The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent cells, first advanced by Conrad Waddington, has evolved in light of experiments showing nondeterministic outcomes of regulatory processes and mathematical methods for quantifying stochasticity. In this Review, we discuss modern approaches to epigenetic and gene regulation landscapes and the associated ideas of entropy and attractor states, illustrating how their definitions are both more precise and relevant to understanding cancer etiology and the plasticity of cancerous states. We address the interplay between different types of regulatory landscapes and how their changes underlie cancer progression.

View Article and Find Full Text PDF

Interferons (IFNs) activate cell-autonomous immunity to combat infection and control inflammation. In this issue of , Boccuni reveal how macrophages incorporate stress signals through the p38 MAPK pathway to enhance IFN-induced responses against intracellular pathogens.

View Article and Find Full Text PDF

Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells.

Cell Syst

December 2022

Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA. Electronic address:

Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity.

View Article and Find Full Text PDF

The hierarchical basis of serial homology and evolutionary novelty.

J Morphol

January 2023

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as "partial" homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of "theoretical articulation" that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena.

View Article and Find Full Text PDF

In this short paper, we argue that there is a fundamental connection between the medical sciences and evolutionary biology as both are sciences of biological variation. Medicine studies pathological variation among humans (and domestic animals in veterinary medicine) and evolutionary biology studies variation within and among species in general. A key principle of evolutionary biology is that genetic differences among species have arisen first from mutations originating within populations.

View Article and Find Full Text PDF

Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and variabilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the most variable, demonstrating strong transcriptome-proteome coevolution.

View Article and Find Full Text PDF

Axon guidance during neural wiring involves a series of precisely controlled chemotactic events by the motile axonal tip, the growth cone. A fundamental question is how neuronal growth cones make directional decisions in response to extremely shallow gradients of guidance cues with exquisite sensitivity. Here we report that nerve growth cones possess a signal amplification mechanism during gradient sensing process.

View Article and Find Full Text PDF

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development.

View Article and Find Full Text PDF

A molecular clock controls periodically driven cell migration in confined spaces.

Cell Syst

July 2022

Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. Electronic address:

Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model.

View Article and Find Full Text PDF

A review of the literature on the anatomy of the lower female genital tract in therian mammals reveals, contrary to the general perception, a large amount of inter-specific variation. Variation in female external genitalia is anatomically more radical than that in the male genitalia. It includes the absence of whole anatomical units, like the cervix in many Xenarthra, or the absence of the urogenital sinus (UGS), as well as the complete spatial separation of the external clitoral parts from the genital canal (either vagina or UGS).

View Article and Find Full Text PDF

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a marker of active promoters. Broad H3K4me3 promoter domains have been associated with cell type identity, but H3K4me3 dynamics upon cellular stress have not been well characterized. We assessed this by exposing endometrial stromal cells to hypoxia, which is a major cellular stress condition.

View Article and Find Full Text PDF