7 results match your criteria: "Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM)[Affiliation]"

Background: Scleroderma is characterized by inflammation and fibrosis, predominantly occurring in the skin and extending to various parts of the body. The pathophysiology of scleroderma is multifaceted, with the current understanding including endothelial damage, inflammatory cell infiltration, and fibroblast activation in its progression. Nonetheless, the mechanism of cellular interactions and the precise spatial distribution of these cellular events within the fibrotic tissues remain elusive, highlighting a critical gap in our comprehensive understanding of scleroderma's pathogenesis.

View Article and Find Full Text PDF

Background: Osteoarthritis is a prevalent degenerative joint condition typically found in individuals who are aged 50 years or older. In this study, the focus is on PIWI-interacting RNA (piRNA), which belongs to a category of small non-coding RNAs. These piRNAs play a role in the regulation of gene expression and the preservation of genomic stability.

View Article and Find Full Text PDF

Background: Osteosarcoma has the highest incidence among bone malignant tumors and mainly occurs in adolescents and the elderly, but the pathological mechanism is still unclear, which makes early diagnosis and treatment very difficult. Bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the sources of osteosarcoma cells. Therefore, a full understanding of the gene expression differences between BMSCs and osteosarcoma cells is very important to explore the pathogenesis of osteosarcoma and facilitate the early diagnosis and treatment of osteosarcoma.

View Article and Find Full Text PDF
Article Synopsis
  • Small nucleolar RNAs (snoRNAs) are important molecules in our bodies that help with different biological processes.
  • When snoRNAs are not working properly, it can lead to various diseases.
  • Recent studies are finding that many snoRNAs have unknown roles and could help us understand and treat human diseases better.
View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) have been used in stem cell-based therapy for various diseases due to their self-renewing ability and differentiation potential to various types of cells and immunoprivileged properties. However, the proliferation capability and functionality of BMSCs are known to decline with aging, which severely limits the extensive applications of BMSC-based therapies. To date, the exact mechanism involved in the cellular senescence of BMSCs remains unclear.

View Article and Find Full Text PDF

Macrophages belong to a special phagocytic subgroup of human leukocytes and are one of the important cells of the human immune system. Small noncoding RNAs are a group of small RNA molecules that can be transcribed without the ability to encode proteins but could play a specific function in cells. SncRNAs mainly include microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs) and repeat RNAs.

View Article and Find Full Text PDF

Background: Skeletal unloading usually induces severe disuse osteoporosis (DOP), which often occurs in patients subjected to prolonged immobility or in spaceflight astronauts. Increasing evidence suggests that exosomes are important mediators in maintaining the balance between bone formation and resorption. We hypothesized that exosomes play an important role in the maintenance of bone homeostasis through intercellular communication between bone marrow mesenchymal stem cells (BMSCs) and osteoclasts under mechanical loading.

View Article and Find Full Text PDF