10 results match your criteria: "Xincheng Hospital of Tianjin University[Affiliation]"
NPJ Regen Med
August 2023
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China.
Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/CoO, to treat ischemic cerebrovascular disease.
View Article and Find Full Text PDFUnlabelled: Changes in neural oscillation amplitude across states of consciousness has been widely reported, but little is known about the link between temporal dynamics of these oscillations on different time scales and consciousness levels. To address this question, we analyzed amplitude fluctuation of the oscillations extracted from spontaneous resting-state EEG recorded from the patients with disorders of consciousness (DOC) and healthy controls. Detrended fluctuation analysis (DFA) and measures of life-time and waiting-time were employed to characterize the temporal structure of EEG oscillations on long time scales (1-20 s) and short time scales (< 1 s), in groups with different consciousness states: patients in minimally conscious state (MCS), patients with unresponsive wakefulness syndrome (UWS) and healthy subjects.
View Article and Find Full Text PDFBiomaterials
August 2023
Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
We previously constructed a three-dimensional gelatin sponge (3D-GS) scaffold as a delivery vehicle for therapeutic cells and trophic factors in the treatment of spinal cord injury (SCI), and this study aimed to assess the biosafety and efficacy of the scaffold in a non-human primate SCI model. However, because it has only been tested in rodent and canine models, the biosafety and efficacy of the scaffold should ideally be assessed in a non-human primate SCI model before its use in the clinic. No adverse reactions were observed over 8 weeks following 3D-GS scaffold implantation into in a Macaca fascicularis with hemisected SCI.
View Article and Find Full Text PDFACS Nano
April 2023
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China.
Catalysts have achieved efficacy in scavenging reactive oxygen species (ROS) to eliminate neuroinflammation, but it ignores the essential fact of blocking the source of ROS regeneration. Here, we report the single-atom catalysts (SACs) Pt/CeO, which can effectively catalyze the breakdown of existing ROS and induce mitochondrial membrane potential (Δψ) depolarization by interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle pathway, indirectly triggering the self-clearance of dysfunctional mitochondria and thus eradicating the source of ROS generation. In a therapeutic model of Parkinson's disease (PD), Pt/CeO wrapped by neutrophil-like (HL-60) cell membranes and modified by rabies virus glycoprotein (RVG29) effectively crosses the blood-brain barrier (BBB), enters dopaminergic neurons entering the neuroinflammatory region breaking down existing ROS and inducing mitophagy by electrostatic adsorption targeting mitochondria to prevent ROS regeneration after catalyst discharge.
View Article and Find Full Text PDFACS Nano
January 2023
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin300072, China.
Excess reactive oxygen species (ROS) produced by abnormal mitochondria is one of the critical triggers of rheumatoid arthritis (RA). Existing nanocatalytic therapies can only catalyze the breakdown of ROS but cannot address the root cause of ROS production, i.e.
View Article and Find Full Text PDFACS Nano
January 2022
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China.
The microorganism has become a promising therapeutic tool for many diseases because it is a kind of cell factory that can efficiently synthesize a variety of bioactive substances. However, the metabolic destiny of microorganisms is difficult to predict . Here, a timing bionic dormant body with programmable destiny is reported, which can predict the metabolic time and location of microorganisms and can prevent it from being damaged by the complex biological environment .
View Article and Find Full Text PDFJ Control Release
October 2021
Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China; Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair, Beijing Tangyi Huikang Biomedical Technology Co., Ltd, Beijing 100010, China. Electronic address:
Cell-based therapy for Parkinson's disease (PD) is a novel and promising approach in recent years. However, exogenous cells are easy to be captured and destroyed by the harsh environment in vivo, so their application prospects have been severely limited. Here, a facile yet versatile approach for decorating individual living cells with nano-armor coatings is reported.
View Article and Find Full Text PDFJ Nanobiotechnology
August 2021
School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai, 300072, Tianjin, China.
Drug resistance of tumor cells is always a headache problem in clinical treatment. In order to combat chemotherapy-resistance in cervical cancer and improve treatment effect, we design a CRISPR/Cas9 nanoeditor to knock out two key oncogenes E6 and E7 that lead to drug tolerance. Meanwhile, the deletion of these two oncogenes can effectively reactivate p53 and pRB signaling pathways that inhibit the growth of tumor cells.
View Article and Find Full Text PDFImmunol Invest
July 2022
Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
T helper 17 (Th17) cells play important role in the defense against pathogens and autoimmune diseases. Many cytokines can induce Th17 cell differentiation. However, the mechanism of Th17 cell differentiation is not well clarified.
View Article and Find Full Text PDF