173 results match your criteria: "Xiamen University Xiamen 361005[Affiliation]"

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

DNA lesion-gated dumbbell nanodevices enable on-demand activation of the cGAS-STING pathway for enhancing cancer immunotherapy.

Chem Sci

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China

Utilizing the cGAS-STING pathway to combat immune evasion is one of the most promising strategies for enhancing cancer immunotherapy. However, current techniques for activating the cGAS-STING pathway often face a dilemma, mainly due to the balance between efficacy and safety. Here, we develop a uracil base lesion-gated dumbbell DNA nanodevice (UBLE) that allows on-demand activation and termination of the cGAS-STING pathway in tumor cells, thereby enhancing cancer immunotherapy.

View Article and Find Full Text PDF

Population expansion from central plain to northern coastal China inferred from ancient human genomes.

iScience

December 2024

Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China.

The population history of the northern coastal Chinese is largely unknown due to the lack of ancient human genomes from the Neolithic to historical periods. In this study, we reported 14 newly generated ancient genomes from Linzi, one of China's densely populated and economically prosperous cities from the Zhou to Han Dynasties. The ancient samples in this study were dated to the Warring States period to the Eastern Han Dynasty (∼2,000 BP).

View Article and Find Full Text PDF

Incorporating carbon-based fillers into triboelectric nanogenerators, TENGs, is a compelling strategy to enhance the power output. However, the lack of systematic studies comparing various carbon fillers and their impact on tribopositive contact layers necessitates further research. To address these concerns, various carbon fillers (including buckminsterfullerene (C), graphene oxide (GO), reduced graphene oxide (rGO), multi-wall carbon nanotube (MWCNT), and super activated carbon (SAC)) with distinct structural and electrical properties are mixed with polyvinyl alcohol, PVA, to form PVA-carbon composites and used as tribopositive layers in the contact-separation of TENGs.

View Article and Find Full Text PDF

With the rapid growth of population and industrial production, wastewater pollution has become a major environmental issue. Wastewater pollution also poses a threat to water resources and human health. Catalytic wet-air oxidation (CWAO) is one of the most economical and environmentally friendly technologies, especially for the treatment of toxic and non-biodegradable pollutants in wastewater.

View Article and Find Full Text PDF

Time-resolved single-cell transcriptomic sequencing.

Chem Sci

November 2024

The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

Cells experience continuous transformation under both physiological and pathological circumstances. Single-cell RNA sequencing (scRNA-seq) is competent in disclosing the disparities of cells; nevertheless, it poses challenges in linking the individual cell state at distinct time points. Although computational approaches based on scRNA-seq data have been put forward for trajectory analysis, the result is based on assumptions and fails to reflect the actual states.

View Article and Find Full Text PDF

Computational discovery of two-dimensional tetragonal group IV-V monolayers.

RSC Adv

November 2024

Department of Physics, OSED, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University Xiamen 361005 China

The two-dimensional (2D) hexagonal group IV-V family has attracted significant attention due to their unique properties and potential applications in electronics, spintronics, and photocatalysis. In this study, we report the discovery of a stable tetragonal allotrope, termed the Td4 phase, of 2D IV-V monolayers through a structural search utilizing an adaptive genetic algorithm. We investigate the geometric structures, structural stabilities, and band structures of the Td4-phase 2D IV-V monolayers (where IV = Si, Ge, Sn; V = P, As, Sb) based on the first-principles calculations.

View Article and Find Full Text PDF

Enhancing electrical conductivity in zirconium-doped SiC ceramics through synergistic effects of crystal structure and free carbon control.

RSC Adv

October 2024

State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China

Polymer-derived ceramics (PDCs) have risen to prominence for applications in electrochemical energy storage, electromagnetic absorbing, and sensing materials, among others. However, a multitude of critical properties in PDCs are still limited by their intrinsic poor electrical conductivity. Herein, novel vinyl and zirconium-modified polycarbosilane precursors with improved electrical conductivity were synthesized through a Grignard coupling reaction of vinyl magnesium chloride and zirconocene dichloride, followed by the insertion polymerization with dichlorodimethylsilane and sodium.

View Article and Find Full Text PDF

Entropy in catalyst dynamics under confinement.

Chem Sci

October 2024

State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

Entropy during the dynamic structural evolution of catalysts has a non-trivial influence on chemical reactions. Confinement significantly affects the catalyst dynamics and thus impacts the reactivity. However, a full understanding has not been clearly established.

View Article and Find Full Text PDF

We have undertaken a vibrational study of the structure of interfacial water and its potential dependence using HO : DO mixtures to explore the O-H and O-D stretching modes of HOD as well as the bending modes of HOD and HO. Due to the symmetry reduction, some of the complexity characteristic of the vibrational spectrum of water is removed in HOD. Coupled with potential-dependent simulations of the gold-water interface, this has enabled a deeper insight into the hydrogen-bond network of interfacial water and into how it is affected by the applied potential.

View Article and Find Full Text PDF

Does "zero-strain" lithiated spinel serve as a strain retardant and an irreversible phase transition regulator for layered oxide cathodes?

Chem Sci

September 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 PR China

Article Synopsis
  • - Layered oxide cathodes face structural issues during cycling, leading researchers to explore a heterostructure strategy that incorporates stable components to improve cycle stability.
  • - This study focuses on lithium cobalt oxide (LiCoO) and uses its low-temperature form as a strain-retardant within the cathode, showcasing complex configurations that enhance stability.
  • - Despite improvements in structural integrity, the composite cathode shows slow lithium-ion transport, highlighting the challenges of material selection and the importance of heterostructure strategies in advancing Li-ion battery technologies.
View Article and Find Full Text PDF

Synthesis and crystallization of a carboxylate functionalized -heterocyclic carbene-based Au cluster with strong photo-luminescence.

Chem Sci

September 2024

Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966 544700025.

Here we report the synthesis and crystallization of a -COOH-capped -heterocyclic carbene (NHC)-protected Au cluster. The single-crystal structure of the -COOH-capped NHC-Au cluster reveals a classic icosahedral core with one Au atom in its center. The icosahedral core is surrounded by five NHC ligands with pseudo C5 symmetry and exposed carboxyls in a pentagonal antiprism fashion.

View Article and Find Full Text PDF

Achievement of a giant electromechanical conversion coefficient in a molecule-based ferroelectric.

Chem Sci

August 2024

Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 Fujian China

Molecule-based ferroelectrics are promising candidates for flexible self-powered power supplies (, piezoelectric generators (PEGs)). Although the large electromechanical conversion coefficients ( × ) of piezoelectrics are key to enhancing the performance of PEGs in their nonresonant states, it remains a great challenge to obtain molecule-based piezoelectrics with large × . Here, we report a molecule-based ferroelectric [(CH)NCHCHCl][GaBr] (1) that exhibits the largest piezoelectric coefficient (∼454 pC N) and electromechanical conversion coefficient (4953.

View Article and Find Full Text PDF

Single cell amperometry has proven to be a powerful and well-established method for characterizing single vesicular exocytotic events elicited at the level of excitable cells under various experimental conditions. Nevertheless, most of the reported characteristics are descriptive, being mostly concerned with the morphological characteristics of the recorded current spikes (maximum current intensities, released charge, rise and fall times, ) which are certainly important but do not provide sufficient kinetic information on exocytotic mechanisms due to lack of quantitative models. Here, continuing our previous efforts to provide rigorous models rationalizing the kinetic structures of frequently encountered spike types (spikes with unique exponential decay tails and kiss-and-run events), we describe a new theoretical approach enabling a quantitative kinetic modeling of all types of exocytotic events giving rise to current spikes exhibiting exponential decay tails.

View Article and Find Full Text PDF

Fluorination has emerged as a promising strategy in medicinal chemistry to improve the pharmacological profiles of drug candidates. Similarly, incorporating fluorinated non-canonical amino acids into macrocyclic peptides expands chemical diversity and enhances their pharmacological properties, from improved metabolic stability to enhanced cell permeability and target interactions. However, only a limited number of fluorinated non-canonical amino acids, which are canonical amino acid analogs, have been incorporated into macrocyclic peptides by ribosomes for construction and target-based screening of fluorinated macrocyclic peptides.

View Article and Find Full Text PDF

Step-induced double-row pattern of interfacial water on rutile TiO(110) under electrochemical conditions.

Chem Sci

August 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details.

View Article and Find Full Text PDF

Automation and machine learning augmented by large language models in a catalysis study.

Chem Sci

August 2024

iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China

Recent advancements in artificial intelligence and automation are transforming catalyst discovery and design from traditional trial-and-error manual mode into intelligent, high-throughput digital methodologies. This transformation is driven by four key components, including high-throughput information extraction, automated robotic experimentation, real-time feedback for iterative optimization, and interpretable machine learning for generating new knowledge. These innovations have given rise to the development of self-driving labs and significantly accelerated materials research.

View Article and Find Full Text PDF

Two dimensional metal-free semiconductors with high work function have attracted extensive research interest in the field of photocatalytic water splitting. Herein, we have proposed a kind of highly stable monolayer carbon nitride CN with an anisotropic structure based on first principles density functional theory. The calculations of electronic structure properties, performed using the HSE06 functional, indicate that monolayer CN has a wide direct band gap of 2.

View Article and Find Full Text PDF

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels.

View Article and Find Full Text PDF

A strategic roadmap for noncarbonized fuels is a global priority, and the reduction of carbon dioxide emissions is a key focus of the Paris Agreement to mitigate the effects of rising temperatures. In this context, hydrogen is a promising noncarbonized fuel, but the pace of its implementation will depend on the engineering advancements made at each step of its value chain. To accelerate its adoption, various applications of hydrogen across industries, transport, power, and building sectors have been identified, where it can be used as a feedstock, fuel, or energy carrier and storage.

View Article and Find Full Text PDF

Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-CN possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-CN and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency.

View Article and Find Full Text PDF

Interfacial electronic state between hexagonal ZnO and cubic NiO.

RSC Adv

May 2024

Department of New Energy Science and Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia Sepang 43900 Malaysia

The interface of two dissimilar materials gives rise to a myriad of interesting structural, magnetic, and electronic properties that may be utilized to produce novel materials with unique characteristics and functions. In particular, growing a cubic oxide film on top of a hexagonal oxide substrate results in such unique properties due to the conflict of their respective stabilization mechanisms within the interface layer. This study aims to elucidate the electronic properties of the interface between hexagonal ZnO and cubic NiO by analyzing the interface electronic states within epitaxial NiO films grown on ZnO substrates, expressed in the form of ultraviolet photoemission spectroscopy (UPS) for valence band structure and X-ray absorption spectroscopy (XAS) spectra for conduction band structure.

View Article and Find Full Text PDF

Significant attention has been directed toward core-shell GaInN/GaN multiple-quantum shell (MQS) nanowires (NWs) in the context of high-efficiency micro light-emitting diodes (micro-LEDs). These independent three-dimensional NWs offer the advantage of reducing the impact of sidewall etching regions. Furthermore, the emitting plane on the sidewalls demonstrates either nonpolar or semipolar orientation, while the dislocation density is exceptionally low.

View Article and Find Full Text PDF

Protocol for a comprehensive pipeline to study ancient human genomes.

STAR Protoc

June 2024

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University Xiamen 361005, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China. Electronic address:

Ancient genomics has revolutionized our understanding of human evolution and migration history in recent years. Here, we present a protocol to prepare samples for ancient genomics research. We describe steps for releasing DNA from human remains, DNA library construction, hybridization capture, quantification, and sequencing.

View Article and Find Full Text PDF

Two-dimensional radial-π-stacks in solution.

Chem Sci

April 2024

Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China.

Highly organized π-aggregate architectures can strongly affect electronic couplings, leading to important photophysical behaviors. With the escalating interest in two-dimensional (2D) materials attributed to their exceptional electronic and optical characteristics, there is growing anticipation that 2D radial-π-stacks built upon radial π-conjugation nanorings, incorporating intra- and inter-ring electronic couplings within the confines of a 2D plane, will exhibit superior topological attributes and distinct properties. Despite their immense potential, the design and synthesis of 2D π-stacks have proven to be a formidable challenge due to the insufficient π-π interactions necessary for stable stacking.

View Article and Find Full Text PDF