6 results match your criteria: "Xi'an Center of Mineral Resources Survey[Affiliation]"
Environ Pollut
January 2025
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, China.
Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.
View Article and Find Full Text PDFThe identification and quantification of soil heavy metal (HM) pollution sources and the identification of driving factors is a prerequisite of soil pollution control. In this paper, the Sabaochaqu Basin of the Tuotuo River, located in the Tibetan Plateau and the headwater of the Yangtze River, was selected as the study area. The soil pollution was evaluated using geochemical baseline, and the source apportionment of soil HMs was performed using absolute principal component score-multiple linear regression (APCS-MLR), edge analysis (UNMIX) and positive matrix decomposition (PMF).
View Article and Find Full Text PDFHeliyon
September 2024
Xi'an Center of Mineral Resources Survey, China Geological Survery, Xi'an, 710100, China.
Mining activities may cause the accumulation of potentially toxic elements (PTEs) in surrounding soils, posing ecological threats and health dangers to the local population. Therefore, a comprehensive assessment using multiple indicators was used to quantify the level of risk in the region. The results showed that the mean values of the nine potentially toxic elements in the study area were lower than the background values only for Cr, and the lowest coefficient of variation was 17.
View Article and Find Full Text PDFHeliyon
December 2023
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100 China.
In order to assess the heavy metal pollution features, ecological dangers, and health risk status posed to human beings by soils in the Ankang Basin, a study was conducted. This involved the collection of 38 surface soil samples, followed by the determination of elemental levels of arsenic, mercury, copper, cadmium, lead, chromium, nickel, and zinc. The concentrations of arsenic, mercury, copper, cadmium, lead, chromium, nickel, and zinc were quantified through the collection of 38 surface soil samples.
View Article and Find Full Text PDFSci Total Environ
December 2023
College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Evapotranspiration (ET) is a vital parameter in terrestrial water-energy cycles. The transpiration fraction (TF) is defined as the ratio of transpiration (T) to evapotranspiration (ET), representing the contribution rate of vegetation transpiration to ecosystem ET. Quantifying the relative contributions of vegetation and climate change on the ET and TF dynamic is of great significance to better understand the water budget between the land and atmosphere.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2023
Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China.
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se or Se), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe and inhibited by Cd but not related with Se species.
View Article and Find Full Text PDF