219 results match your criteria: "Woods Hole Research Center[Affiliation]"

Diminishing warming effects on plant phenology over time.

New Phytol

January 2025

Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.

Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring.

View Article and Find Full Text PDF

Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous 'blue carbon' studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes.

View Article and Find Full Text PDF

Exceptional fire activity in 2019 sparked concern about Amazon forest conservation. However, the inability to rapidly separate satellite fire detections by fire type hampered fire suppression and assessment of ecosystem and air quality impacts. Here, we describe the development of a near-real-time approach for tracking contributions from deforestation, forest, agricultural, and savanna fires to burned area and emissions and apply the approach to the 2019 fire season in South America.

View Article and Find Full Text PDF

Fires across the Arctic-boreal zone (ABZ) play an important role in the boreal forest succession, permafrost thaw, and the regional and global carbon cycle and climate. These fires occur mainly in summer with large interannual variability. Previous studies primarily focused on the impacts of local surface climate and tropical El Niño-Southern Oscillation (ENSO).

View Article and Find Full Text PDF

We developed a high-throughput mapping workflow, which centers on deep learning (DL) convolutional neural network (CNN) algorithms on high-performance distributed computing resources, to automatically characterize ice-wedge polygons (IWPs) from sub-meter resolution commercial satellite imagery. We applied a region-based CNN object instance segmentation algorithm, namely the Mask R-CNN, to automatically detect and classify IWPs in North Slope of Alaska. The central goal of our study was to systematically expound the DLCNN model interoperability across varying tundra types (sedge, tussock sedge, and non-tussock sedge) and image scene complexities to refine the understanding of opportunities and challenges for regional-scale mapping applications.

View Article and Find Full Text PDF

Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied.

View Article and Find Full Text PDF

The temperature dependence of global photosynthesis and respiration determine land carbon sink strength. While the land sink currently mitigates ~30% of anthropogenic carbon emissions, it is unclear whether this ecosystem service will persist and, more specifically, what hard temperature limits, if any, regulate carbon uptake. Here, we use the largest continuous carbon flux monitoring network to construct the first observationally derived temperature response curves for global land carbon uptake.

View Article and Find Full Text PDF

Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28-day incubations.

View Article and Find Full Text PDF

The retreat of glaciers in response to global warming has the potential to trigger landslides in glaciated regions around the globe. Landslides that enter fjords or lakes can cause tsunamis, which endanger people and infrastructure far from the landslide itself. Here we document the ongoing movement of an unstable slope (total volume of 455 × 10 m) in Barry Arm, a fjord in Prince William Sound, Alaska.

View Article and Find Full Text PDF

Understanding carbon (C) dynamics from ecosystem to global scales remains a challenge. Although expansion of global carbon dioxide (CO) observatories makes it possible to estimate C-cycle processes from ecosystem to global scales, these estimates do not necessarily agree. At the continental US scale, only 5% of C fixed through photosynthesis remains as net ecosystem exchange (NEE), but ecosystem measurements indicate that only 2% of fixed C remains in grasslands, whereas as much as 30% remains in needleleaf forests.

View Article and Find Full Text PDF

An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers.

Geophys Res Lett

December 2020

Department of Earth Sciences ETH Zurich Zurich Switzerland.

Permafrost thaw in Arctic watersheds threatens to mobilize hitherto sequestered carbon. We examine the radiocarbon activity (FC) of dissolved organic carbon (DOC) in the northern Mackenzie River basin. From 2003-2017, DOC-FC signatures (1.

View Article and Find Full Text PDF

Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands.

Bioscience

December 2020

Woodwell Climate Research Center (formerly, the Woods Hole Research Center), in Falmouth, Massachusetts. Deegan leads the TIDE project, the long-term nutrient enrichment experiment from which much of these results derive.

Article Synopsis
  • Excess reactive nitrogen from land systems flows to coastal areas, causing eutrophication, but coastal wetlands help mitigate this by absorbing some nitrogen.
  • The study highlights the difference between oxidized nitrogen (nitrate) and reduced nitrogen (ammonium) in enhancing nutrient uptake and primary production in salt marshes.
  • Understanding the roles of these nitrogen forms is crucial for effective management of coastal wetlands in the face of nitrogen enrichment and rising sea levels.
View Article and Find Full Text PDF

The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots.

View Article and Find Full Text PDF

In trees, large uncertainties remain in how nonstructural carbohydrates (NSCs) respond to variation in water availability in natural, intact ecosystems. Variation in NSC pools reflects temporal fluctuations in supply and demand, as well as physiological coordination across tree organs in ways that differ across species and NSC fractions (e.g.

View Article and Find Full Text PDF

A comprehensive quantification of global nitrous oxide sources and sinks.

Nature

October 2020

International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA.

Nitrous oxide (NO), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric NO concentrations have contributed to stratospheric ozone depletion and climate change, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of NO emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources.

View Article and Find Full Text PDF

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO flux, commonly though imprecisely termed soil respiration (R ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency R measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well.

View Article and Find Full Text PDF

Local regulations on residential landscapes (yards and gardens) can facilitate or constrain ecosystem services and disservices in cities. To our knowledge, no studies have undertaken a comprehensive look at how municipalities regulate residential landscapes to achieve particular goals and to control management practices. Across six U.

View Article and Find Full Text PDF

Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests.

J Geophys Res Biogeosci

August 2020

AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE Montpellier France.

Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.

View Article and Find Full Text PDF

High rates of biological nitrogen fixation (BNF) are commonly reported for tropical forests, but most studies have been conducted in regions that receive substantial inputs of molybdenum (Mo) from atmospheric dust and sea-salt aerosols. Even in these regions, the low availability of Mo can constrain free-living BNF catalyzed by heterotrophic bacteria and archaea. We hypothesized that in regions where atmospheric inputs of Mo are low and soils are highly weathered, such as the southeastern Amazon, Mo would constrain BNF.

View Article and Find Full Text PDF

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide. Regrowing natural forests is a prominent strategy for capturing additional carbon, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation.

View Article and Find Full Text PDF

Salt marshes provide critical ecosystem services including some of the highest rates of carbon storage on Earth. However, many salt marshes receive very high nutrient loads and there is a growing body of evidence indicating that this nutrient enrichment alters carbon cycle processes. While many restoration plans prioritize nutrient management in their efforts to conserve salt marsh ecosystems, there has been little empirical investigation of the capacity for carbon cycle processes to recover once nutrient loading is reduced.

View Article and Find Full Text PDF
Article Synopsis
  • - The amplitude of the atmospheric CO seasonal cycle in the Northern Hemisphere has risen by 30-50% since the 1960s, indicating significant ecological changes in northern regions.
  • - A study using a tagged atmospheric transport model identifies Siberian and temperate ecosystems as key contributors to this increased seasonal CO exchange, with Siberia being the primary driver in high-latitude areas.
  • - The findings highlight regional differences in carbon dynamics and ecological responses to global changes, emphasizing the need for improved models to better understand these variations moving forward.
View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF