84 results match your criteria: "Wigner Research Center for Physics[Affiliation]"
J Am Chem Soc
June 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Oxide thin films grown on metal surfaces have wide applications in catalysis and beyond owing to their unique surface structures compared to their bulk counterparts. Despite extensive studies, the atomic structures of copper surface oxides on Cu(111), commonly referred to as "44" and "29", have remained elusive. In this work, we demonstrated an approach for the structural determination of oxide surfaces using element-specific scanning tunneling microscopy (STM) imaging enhanced by functionalized tips.
View Article and Find Full Text PDFJ Phys Chem Lett
April 2024
European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.
Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions.
View Article and Find Full Text PDFiScience
February 2024
Ernst Strüngmann Institute, Frankfurt am Main, Germany.
Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesized that attentional and contextual signals interact in V1 in a manner that primarily benefits the representation of natural stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity from population responses evoked by natural scenes, but not by synthetic stimuli lacking higher-order statistical regularities.
View Article and Find Full Text PDFbioRxiv
October 2023
Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary.
Attention is a cognitive faculty that selects part of a larger set of percepts, driven by cues such as stimulus saliency, internal goals or priors. The enhancement of the attended representation and inhibition of distractors have been proposed as potential neural mechanisms driving this selection process. Yet, how attention operates when the cue has to be internally constructed from conflicting stimuli, decision rules, and reward contingencies, is less understood.
View Article and Find Full Text PDFNat Commun
October 2023
Department of Computational Sciences, Wigner Research Center for Physics, Budapest, 1121, Hungary.
Effective task execution requires the representation of multiple task-related variables that determine how stimuli lead to correct responses. Even the primary visual cortex (V1) represents other task-related variables such as expectations, choice, and context. However, it is unclear how V1 can flexibly accommodate these variables without interfering with visual representations.
View Article and Find Full Text PDFJ Biophotonics
October 2023
Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest, Hungary.
Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2023
Department of Physics and Astronomy, California State University, Northridge, CA 91330, United States of America.
Nitrogen (N) doped graphene materials have been synthesized using the sole precursor adenine on the Ir(111) and Ru(0001) surfaces. X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM) have been used to characterize the obtained N-doped graphene materials. Several graphitic and pyridinic N dopants have been identified on the atomic scale by combining STM measurements and STM simulations based on density functional theory calculations.
View Article and Find Full Text PDFPNAS Nexus
January 2023
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvägen 23, Stockholm, SE-10044, Sweden.
High-density and nanosized deformation twins in face-centered cubic (fcc) materials can effectively improve the combination of strength and ductility. However, the microscopic dislocation mechanisms enabling a high twinnability remain elusive. Twinning usually occurs via continuous nucleation and gliding of twinning partial dislocations on consecutive close-packed atomic planes.
View Article and Find Full Text PDFNano Lett
February 2023
Institut für Physik, Technische Universität Ilmenau, D-98693Ilmenau, Germany.
The exchange interaction of a brominated Co-porphyrin molecule with the Cooper pair condensate of Pb(111) is modified by reducing the Co-surface separation. The stepwise dehalogenation and dephenylation change the Co adsorption height by a few picometers. Only the residual Co-porphine core exhibits a Yu-Shiba-Rusinov bound state with low binding energy in the Bardeen-Cooper-Schrieffer energy gap.
View Article and Find Full Text PDFJ Physiol
August 2023
Theoretical Neuroscience and Complex Systems Research Group, Department of Computational Sciences, Wigner Research Center for Physics, Budapest, Hungary.
Although electrophysiologists have been recording intracellular neural activity routinely ever since the ground-breaking work of Hodgkin and Huxley, and extracellular multichannel electrodes have also been used frequently and extensively, a practical experimental method to track changes in membrane potential along a complete single neuron is still lacking. Instead of obtaining multiple intracellular measurements on the same neuron, we propose an alternative method by combining single-channel somatic patch-clamp and multichannel extracellular potential recordings. In this work, we show that it is possible to reconstruct the complete spatiotemporal distribution of the membrane potential of a single neuron with the spatial resolution of an extracellular probe during action potential generation.
View Article and Find Full Text PDFElife
November 2022
Computational Systems Neuroscience Lab, Wigner Research Center for Physics, Budapest, Budapest, Hungary.
Efficient planning in complex environments requires that uncertainty associated with current inferences and possible consequences of forthcoming actions is represented. Representation of uncertainty has been established in sensory systems during simple perceptual decision making tasks but it remains unclear if complex cognitive computations such as planning and navigation are also supported by probabilistic neural representations. Here, we capitalized on gradually changing uncertainty along planned motion trajectories during hippocampal theta sequences to capture signatures of uncertainty representation in population responses.
View Article and Find Full Text PDFLife (Basel)
October 2022
Institute for Solid State Physics and Optics, Wigner Research Center for Physics, H-1525 Budapest, Hungary.
(DM) is a connective tissue with dense collagen, which is a protective membrane surrounding the human brain. The optical clearing (OC) method was used to make DM more transparent, thereby allowing to increase in-depth investigation by confocal Raman micro-spectroscopy and estimate the diffusivity of 50% glycerol and water migration. Glycerol concentration was obtained, and the diffusion coefficient was calculated, which ranged from 9.
View Article and Find Full Text PDFNature
March 2022
Max-Planck-Institut für Quantenoptik, Garching, Germany.
Materials (Basel)
February 2022
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden.
The hexagonal close-packed (hcp) phase of iron is unstable under ambient conditions. The limited amount of existing experimental data for this system has been obtained by extrapolating the parameters of hcp Fe-Mn alloys to pure Fe. On the theory side, most density functional theory (DFT) studies on hcp Fe have considered non-magnetic or ferromagnetic states, both having limited relevance in view of the current understanding of the system.
View Article and Find Full Text PDFMaterials (Basel)
January 2022
Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
The crystallographic and magnetic properties of an Fe monolayer (ML) grown on 2 ML Au/W(110) substrate are studied with spin-polarized low-energy electron microscopy, density functional theory, and relativistic screened Korringa-Kohn-Rostoker calculations. The single layer of iron atoms possesses hexagonal symmetry and reveals a ferromagnetic order at room temperature. We experimentally demonstrate the possibility of tuning the Curie temperature and the magnitude of magnetization of the Fe monolayer by capping with Au.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2022
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
Tailored coupled cluster theory represents a computationally inexpensive way to describe static and dynamical electron correlation effects. In this work, we scrutinize the performance of various coupled cluster methods tailored by electronic wave functions of polynomial cost. Specifically, we focus on frozen-pair coupled cluster (fpCC) methods, which are tailored by pair-coupled cluster doubles (pCCD), and coupled cluster theory tailored by matrix product state wave functions optimized by the density matrix renormalization group (DMRG) algorithm.
View Article and Find Full Text PDFJ Biophotonics
April 2022
Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Budapest, Hungary.
The effect of tissue optical clearing (TOC) to increase the probing depth and observe in-depth structure of the ex vivo porcine dura mater was studied by confocal Raman microspectroscopy (CRM). Raman intensities were significantly increased at the depth of 250 μm for all collagen bands after treatment with glycerol. The influence of glycerol on collagen hydration was also investigated.
View Article and Find Full Text PDFPhys Rev Lett
April 2021
CERN, Geneva, Switzerland.
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.
View Article and Find Full Text PDFNat Commun
April 2021
Department of Physics, University of Hamburg, Hamburg, Germany.
Magnetic atoms coupled to the Cooper pairs of a superconductor induce Yu-Shiba-Rusinov states (in short Shiba states). In the presence of sufficiently strong spin-orbit coupling, the bands formed by hybridization of the Shiba states in ensembles of such atoms can support low-dimensional topological superconductivity with Majorana bound states localized on the ensembles' edges. Yet, the role of spin-orbit coupling for the hybridization of Shiba states in dimers of magnetic atoms, the building blocks for such systems, is largely unexplored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
Applied Materials Physics, Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden;
The Invar anomaly is one of the most fascinating phenomena observed in magnetically ordered materials. Invariant thermal expansion and elastic properties have attracted substantial scientific attention and led to important technological solutions. By studying planar faults in the high-temperature magnetically disordered state of [Formula: see text], here we disclose a completely different anomaly.
View Article and Find Full Text PDFMaterials (Basel)
February 2021
Department of Materials Physics, Eötvös Loránd University, P.O.B. 32, H-1518 Budapest, Hungary.
The present investigation is directed to phase transitions in the equimolar NiCoFeCrGa high entropy alloy, which is a mixture of face-centered cubic (FCC) and body-centered cubic (BCC) crystalline phases. The microstructure of the samples was investigated by using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), transmission electron microscopy-based energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), as well as X-ray diffraction (XRD) measurements. Based on the phases observed in different temperature ranges, a sequence of the phase transitions can be established, showing that in a realistic process, when freely cooling the sample with the furnace from high to room temperature, a microstructure having spinodal-like decomposition can also be expected.
View Article and Find Full Text PDFSci Rep
March 2021
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, 100 44, Stockholm, Sweden.
Tetragonal ([Formula: see text]) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order-disorder transition temperature ([Formula: see text] K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties.
View Article and Find Full Text PDFJ Chem Phys
February 2021
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
Wave functions based on electron-pair states provide inexpensive and reliable models to describe quantum many-body problems containing strongly correlated electrons, given that broken-pair states have been appropriately accounted for by, for instance, a posteriori corrections. In this article, we analyze the performance of electron-pair methods in predicting orbital-based correlation spectra. We focus on the (orbital-optimized) pair-coupled cluster doubles (pCCD) ansatz with a linearized coupled-cluster (LCC) correction.
View Article and Find Full Text PDFPhys Rev Lett
December 2020
CERN, Geneva, Switzerland.
We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases.
View Article and Find Full Text PDFRev Sci Instrum
September 2020
Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany.