5 results match your criteria: "Whitehead Institute for Biomedical Research (WIBR)[Affiliation]"

Background: MicroRNAs are noncoding RNA molecules of ~ 22 nucleotides with diagnostic and therapeutic action [Curr Drug Targets, 2015. 16(12): p. 1381-403], affecting the expression of mRNAs involved in invasion, migration, and development [Oncotarget, 2015.

View Article and Find Full Text PDF

Synthesis of Aza-Rocaglates via ESIPT-Mediated (3+2) Photocycloaddition.

Chemistry

August 2016

Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, MA, 02215, USA.

Synthesis of aza-rocaglates, nitrogen-containing analogues of the rocaglate natural products, is reported. The route features ESIPT-mediated (3+2) photocycloaddition of 1-alkyl-2-aryl-3-hydroxyquinolinones with the dipolarophile methyl cinnamate. A continuous photoflow reactor was utilized for photocycloadditions.

View Article and Find Full Text PDF

Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons.

Biol Open

July 2015

Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile

Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus.

View Article and Find Full Text PDF

No disease-modifying therapies are available for synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). The lack of therapies has been impeded by a paucity of validated drug targets and problematic cell-based model systems. New approaches are therefore needed to identify genes and compounds that directly target the underlying cellular pathologies elicited by the pathological protein, α-synuclein (α-syn).

View Article and Find Full Text PDF

α-Synuclein (α-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from α-syn toxicity.

View Article and Find Full Text PDF