6 results match your criteria: "West Virginia Universitygrid.268154.c[Affiliation]"

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE).

View Article and Find Full Text PDF

Cyclic di-GMP Regulates the Type III Secretion System and Virulence in Bordetella bronchiseptica.

Infect Immun

June 2022

Instituto de Biotecnología y Biología Molecular-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.

The second messenger cyclic di-GMP (c-di-GMP) is a ubiquitous molecule in bacteria that regulates diverse phenotypes. Among them, motility and biofilm formation are the most studied. Furthermore, c-di-GMP has been suggested to regulate virulence factors, making it important for pathogenesis.

View Article and Find Full Text PDF

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease.

View Article and Find Full Text PDF

Mucosal Immunization with DTaP Confers Protection against Infection and Cough in Sprague-Dawley Rats.

Infect Immun

November 2021

Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia Universitygrid.268154.c, Morgantown, West Virginia, USA.

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis.

View Article and Find Full Text PDF

Reinvestigating the Coughing Rat Model of Pertussis To Understand Pathogenesis.

Infect Immun

November 2021

Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia Universitygrid.268154.c, Morgantown, West Virginia, USA.

Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis.

View Article and Find Full Text PDF