79 results match your criteria: "Wenzhou Institute of Shanghai University[Affiliation]"
Sci Adv
January 2025
Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China.
Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.
View Article and Find Full Text PDFBiomater Transl
November 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Magnesium oxide (MgO) is known for its bioactivity and osteoconductivity when incorporated into biodegradable poly(lactic acid) (PLA), whereas the weak interfacial bonding between MgO microspheres (mMPs) and PLA often leads to suboptimal composite properties with uncontrollable functionality. Conjugation of mMPs with PLA may offer a good way to enhance their compatibility. In this study, we systematically investigated two grafting techniques, solution grafting (Sol) and melt grafting (Mel), to decorate poly (D-lactic acid) (PDLA) on mMPs pre-treated by prioritized hydration to obtain Sol MPs and Mel MPs, in order to optimize the grafting efficiency and improve their controllability in the properties including the crystal structure and surface morphology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
In contemporary times, cancer poses the most significant threat to human life and safety. Scientists have relentlessly pursued the intricacies of carcinogenesis and explored ways to prevent and treat cancer. Carcinogenesis is a complex, multi-faceted, and multi-stage process, with numerous underlying causes, including inflammation and fibrosis.
View Article and Find Full Text PDFBone Res
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
Accumulating research has shed light on the significance of skeletal interoception, in maintaining physiological and metabolic homeostasis related to bone health. This review provides a comprehensive analysis of how skeletal interoception influences bone homeostasis, delving into the complex interplay between the nervous system and skeletal system. One key focus of the review is the role of various factors such as prostaglandin E2 (PGE2) in skeletal health via skeletal interoception.
View Article and Find Full Text PDFBone Res
November 2024
Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications.
View Article and Find Full Text PDFJ Adv Res
November 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China. Electronic address:
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration.
View Article and Find Full Text PDFMater Today Bio
December 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration.
View Article and Find Full Text PDFJ Mater Chem B
November 2024
Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
Cell Commun Signal
October 2024
Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
Currently, despite the vast amounts of time and money invested in cancer treatment, cancer remains one of the primary threats to human life. The primary factor contributing to the low treatment efficacy is cancer heterogeneity. The unclear molecular mechanisms underlying tumorigenesis, coupled with the complexity of human physiology, and the inability of animal models to accurately replicate the human tumor microenvironment, pose significant hurdles in the development of novel cancer therapies.
View Article and Find Full Text PDFAdv Mater
November 2024
Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Low-intensity ultrasound-mediated sonodynamic therapy (SDT), which, by design, integrates sonosensitizers and molecular oxygen to generate therapeutic substances (e.g., toxic hydroxyl radicals, superoxide anions, or singlet oxygen) at disease sites, has shown enormous potential for the effective treatment of a variety of diseases.
View Article and Find Full Text PDFBioact Mater
December 2024
Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China.
The healing of large skin defects remains a significant challenge in clinical settings. The lack of epidermal sources, such as autologous skin grafting, limits full-thickness skin defect repair and leads to excessive scar formation. Skin organoids have the potential to generate a complete skin layer, supporting in-situ skin regeneration in the defect area.
View Article and Find Full Text PDFBiomater Transl
March 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
Mater Today Bio
October 2024
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy.
View Article and Find Full Text PDFAdv Mater
October 2024
Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Osteosarcoma is one of the most dreadful bone neoplasms in young people, necessitating the development of innovative therapies that can effectively eliminate tumors while minimizing damage to limb function. An ideal therapeutic strategy should possess three essential capabilities: antitumor effects, tissue-protective properties, and the ability to enhance osteogenesis. In this study, self-assembled Ce-substituted molybdenum blue (CMB) nanowheel crystals are synthesized and loaded onto 3D-printed bioactive glass (CMB@BG) scaffolds to develop a unique three-in-one treatment approach for osteosarcoma.
View Article and Find Full Text PDFFront Pharmacol
July 2024
Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
During acute pancreatitis, intestinal permeability increases due to intestinal motility dysfunction, microcirculatory disorders, and ischemia-reperfusion injury, and disturbances in the intestinal flora make bacterial translocation easier, which consequently leads to local or systemic complications such as pancreatic and peripancreatic necrotic infections, acute lung injury, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Therefore, adjusting intestinal ecosystem balance may be a promising approach to control local and systemic complications of acute pancreatitis. In this paper, we reviewed the causes and manifestations of intestinal flora disorders during acute pancreatitis and their complications, focused on the reduction of acute pancreatitis and its complications by adjusting the intestinal microbial balance, and innovatively proposed the treatment of acute pancreatitis and its complications by gut microbiota-derived extracellular vesicles.
View Article and Find Full Text PDFAngiogenesis
November 2024
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive.
View Article and Find Full Text PDFTech Coloproctol
July 2024
Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Background: Fistula-tract laser closure (FiLaC™) has shown promising outcomes in perianal fistulizing Crohn's disease (pfCD). However, most studies assessed a mixed cohort encompassing pfCD and cryptoglandular fistulas during a short follow-up period. This study aimed to evaluate the long-term treatment outcomes of FiLaC™ in patients with complex pfCD.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Adv Sci (Weinh)
August 2024
Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China.
Glioblastoma multiforme (GBM) is the most aggressive and lethal subtype of gliomas of the central nervous system. The efficacy of sonodynamic therapy (SDT) against GBM is significantly reduced by the expression of apoptosis-inhibitory proteins in GBM cells. In this study, an intelligent nanoplatform (denoted as Aza-BD@PC NPs) based on the aza-boron-dipyrromethene dye and phenyl chlorothionocarbonate-modified DSPE-PEG molecules is developed for synergistic ferroptosis-enabled gas therapy (GT) and SDT of GBM.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2024
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China. Electronic address:
The integration of functional nanomaterials with tissue engineering scaffolds has emerged as a promising solution for simultaneously treating malignant bone tumors and repairing resected bone defects. However, achieving a uniform bioactive interface on 3D-printing polymer scaffolds with minimized microstructural heterogeneity remains a challenge. In this study, we report a facile metal-coordination self-assembly strategy for the surface engineering of 3D-printed polycaprolactone (PCL) scaffolds with nanostructured two-dimensional conjugated metal-organic frameworks (cMOFs) consisting of Cu ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP).
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2024
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Mil Med Res
June 2024
Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.