22 results match your criteria: "Weill-Cornell Graduate School of the Medical Sciences[Affiliation]"

Cognitive Control Network and Language Reorganization in Patients with Brain Tumors.

AJNR Am J Neuroradiol

December 2024

From the Department of Radiology, (Luca Pasquini), Yale New Haven Hospital, Yale Medical School, New Haven, CT, USA; Department of Radiology (Luca Pasquini, Mehrnaz Jenabi, Andrei I. Holodny), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics (Antonio Napolitano, Leonardo Spitoni), Bambino Gesù Children's Hospital, Rome, Italy; Department of Engineering (Maurizio Schmid), University Roma Tre, Rome, Italy; Department of Radiology (Francesco Dellepiane) Bambino Gesù Children's Hospital, Rome, Italy; Department of Medical Physics (Kyung K. Peck), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology (Andrei I. Holodny), Weill Medical College of Cornell University, New York, NY, USA; Department of Neuroscience (Andrei I. Holodny), Weill Cornell Graduate School of the Medical Sciences, New York, NY, USA.

Background And Purpose: The interaction between language and other cognitive networks in patients harboring brain tumors is poorly understood. We studied the modification of the cognitive control network (CCN) induced by brain tumors and its participation in language reorganization. We hypothesized that patients with brain tumors and reorganized language would show modification of the CCN compared to patients who remain left dominant.

View Article and Find Full Text PDF

Distinguishing treatment-induced imaging changes from progressive disease has important implications for avoiding inappropriate discontinuation of a treatment. Our goal in this study is to evaluate the utility of dynamic contrast-enhanced (DCE) perfusion MRI as a biomarker for the early detection of progression. We hypothesize that DCE-MRI may have the potential as an early predictor for the progression of disease in GBM patients when compared to the current standard of conventional MRI.

View Article and Find Full Text PDF

Background And Purpose: Current imaging techniques have difficulty differentiating treatment success and failure in spinal metastases undergoing radiation therapy. This study investigated the correlation between changes in dynamic contrast-enhanced MR imaging perfusion parameters and clinical outcomes following radiation therapy for spinal metastases. We hypothesized that perfusion parameters will outperform traditional size measurements in discriminating treatment success and failure.

View Article and Find Full Text PDF

Artificial intelligence (AI) has the potential to bring transformative improvements to the field of radiology; yet, there are barriers to widespread clinical adoption. One of the most important barriers has been access to large, well-annotated, widely representative medical image datasets, which can be used to accurately train AI programs. Creating such datasets requires time and expertise and runs into constraints around data security and interoperability, patient privacy, and appropriate data use.

View Article and Find Full Text PDF

Magnetic resonance (MR) relaxometry is a quantitative imaging method that measures tissue relaxation properties. This review discusses the state of the art of clinical proton MR relaxometry for glial brain tumors. Current MR relaxometry technology also includes MR fingerprinting and synthetic MRI, which solve the inefficiencies and challenges of earlier techniques.

View Article and Find Full Text PDF

Aim: Because the tongue is a midline structure, studies on the neural correlates of lateralized tongue function are challenging and remain limited. Patients with tongue cancer who undergo unilateral partial glossectomy may be a unique cohort to study tongue-associated cortical activation, particularly regarding brain hemispheric lateralization. This longitudinal functional magnetic resonance imaging (fMRI) study investigated cortical activation changes for three tongue tasks before and after left-sided partial glossectomy in patients with squamous cell carcinoma of the tongue.

View Article and Find Full Text PDF

Objectives: Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how functional MRI (fMRI) can help identify critical brain areas in patients with tumors, specifically looking at changes in language processing over time to understand cortical reorganization.
  • - Researchers analyzed 33 patients who underwent two fMRI scans, measuring language dominance and looking for translocation of language function, which means a shift in the brain areas responsible for language.
  • - Results showed that 27% of patients had a shift in language function, particularly those with tumors affecting Broca's area, suggesting that tumor progression may influence the brain's ability to reorganize language functions.
View Article and Find Full Text PDF

Language reorganization in patients with left-hemispheric gliomas is associated with increased cortical volume in language-related areas and in the default mode network.

Cortex

December 2022

Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA; Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY 10065, USA.

Background: Language function may reorganize to overcome focal impairment; however, the relation between functional and structural changes in patients with brain tumors remains unclear. We investigated the cortical volume of atypical language dominant (AD) patients with left frontal-insular high-grade (HGG) and low-grade glioma (LGG). We hypothesized atypical language being associated with areas of increased cortical volume in the right hemisphere, including language areas homologues.

View Article and Find Full Text PDF

Background: Neurosurgical resection of insular gliomas is complicated by the possibility of iatrogenic injury to the lenticulostriate arteries (LSAs) and is associated with devastating neurological complications, hence the need to accurately assess the number of LSAs and their relationship to the tumor preoperatively.

Methods: The study included 24 patients with insular gliomas who underwent preoperative 3D-TOF MRA to visualize LSAs. The agreement of preoperative magnetic resonance imaging with intraoperative data in terms of the number of LSAs and their invasion by the tumor was assessed using the Kendall rank correlation coefficient and Cohen's Kappa with linear weighting.

View Article and Find Full Text PDF

Brain tumors lead to modifications of brain networks. Graph theory plays an important role in clarifying the principles of brain connectivity. Our objective was to investigate network modifications related to tumor grade and location using resting-state functional magnetic resonance imaging (fMRI) and graph theory.

View Article and Find Full Text PDF

Resting-State Functional MRI Changes in Normal Human Aging.

Radiology

September 2022

From the Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Weill Medical College of Cornell University, New York, NY; and Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY.

View Article and Find Full Text PDF

When the language-dominant hemisphere is damaged by a focal lesion, the brain may reorganize the language network through functional and structural changes known as adaptive plasticity. Adaptive plasticity is documented for triggers including ischemic, tumoral, and epileptic focal lesions, with effects in clinical practice. Many questions remain regarding language plasticity.

View Article and Find Full Text PDF

Brain tumors can have far-reaching impacts on functional networks. Language processing is typically lateralized to the left hemisphere, but also involves the right hemisphere and cerebellum. This resting-state functional MRI study investigated the proximal and distal effects of left-hemispheric brain tumors on language network connectivity in the ipsilesional and contralesional hemispheres.

View Article and Find Full Text PDF

Background And Purpose: The default mode network normally decreases in activity during externally directed tasks. Although default mode network connectivity is disrupted in numerous brain pathologies, default mode network deactivation has not been studied in patients with brain tumors. We investigated default mode network deactivation with language task-based fMRI by measuring the anticorrelation of a critical default mode network node, the posterior cingulate cortex, in patients with gliomas and controls; furthermore, we examined default mode network functional connectivity in these patients with task-based and resting-state fMRI.

View Article and Find Full Text PDF

Background And Purpose: Assessment of the essential white matter fibers of arcuate fasciculus and corticospinal tract (CST), required for preoperative planning in brain tumor patients, relies on the reliability of diffusion tensor imaging (DTI). The recent development of multiband DTI (mb-DTI) based on simultaneous multislice excitation could maintain the overall quality of tractography while not exceeding standard clinical care time. To address this potential, we performed quantitative analyses to evaluate tractography results of arcuate fasciculus and CST acquired by mb-DTI in brain tumor patients.

View Article and Find Full Text PDF

Background And Purpose: Cognitive challenges are prevalent in survivors of glioma, but their neurobiology is incompletely understood. The purpose of this study was to investigate the effect of glioma presence and tumor characteristics on resting-state functional connectivity and amplitude of low-frequency fluctuations of the salience network, a key neural network associated with cognition.

Materials And Methods: Sixty-nine patients with glioma (mean age, 48.

View Article and Find Full Text PDF

T1-weighted Dynamic Contrast-enhanced MRI to Differentiate Nonneoplastic and Malignant Vertebral Body Lesions in the Spine.

Radiology

November 2020

From the Departments of Radiology (Y.G., K.K.P., J.L., J.T., E.L., J.A.P., S.K., A.H.), Medical Physics (K.K.P.), Radiation Oncology (Y.Y.), and Pathology (M.R.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021; Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.H.); and Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY (A.H.).

Background Dynamic contrast agent-enhanced (DCE) perfusion MRI may help differentiate between nonneoplastic and malignant lesions in the spine. Purpose To investigate the correlation between fractional plasma volume (), a parameter derived from DCE perfusion MRI, and histopathologic diagnosis for spinal lesions. Materials and Methods In this retrospective study, patients who underwent DCE perfusion MRI and lesion biopsy between May 2015 and May 2018 were included.

View Article and Find Full Text PDF

Corrigendum to "A vascular-task response dependency and its application in functional imaging of brain tumors" [J. Neurosci. Methods 322 (2019) 10-22].

J Neurosci Methods

May 2020

Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, USA.

View Article and Find Full Text PDF

Decreased Hand Motor Resting-State Functional Connectivity in Patients with Glioma: Analysis of Factors including Neurovascular Uncoupling.

Radiology

March 2020

From the Departments of Radiology (H.S., B.V., M.E.L., M.J., A.I.H., K.K.P.), Medical Physics (K.K.P.), and Epidemiology-Biostatistics (J.R.F., Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; Department of Radiology, Catholic University of the Sacred Heart-A. Gemelli Hospital, Rome, Italy (M.E.L.); Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY (A.I.H.); and Department of Radiology, Weill Medical College of Cornell University, New York, NY (A.I.H.).

Background Resting-state functional MRI holds substantial potential for clinical application, but limitations exist in current understanding of how tumors exert local effects on resting-state functional MRI readings. Purpose To investigate the association between tumors, tumor characteristics, and changes in resting-state connectivity, to explore neurovascular uncoupling as a mechanism underlying these changes, and to evaluate seeding methodologies as a clinical tool. Materials and Methods Institutional review board approval was obtained for this HIPAA-compliant observational retrospective study of patients with glioma who underwent MRI and resting-state functional MRI between January 2016 and July 2017.

View Article and Find Full Text PDF

A vascular-task response dependency and its application in functional imaging of brain tumors.

J Neurosci Methods

July 2019

Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Functional MRI Laboratory, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, USA.

Purpose: Preoperative functional MRI (fMRI) is limited by a muted BOLD response caused by abnormal vasoreactivity and resultant neurovascular uncoupling adjacent to malignant brain tumors. We propose to overcome this limitation and more accurately identify eloquent areas adjacent to brain tumors by independently assessing vasoreactivity using breath-holding and incorporating these data into the fMRI analysis.

Methods: Local vasoreactivity using a breath-holding paradigm with the same timing as the functional motor and language tasks was determined in 16 patients (9 glioblastomas, 1 anaplastic astrocytoma, 5 low grade astrocytomas, and 1 metastasis) and 6 healthy control subjects.

View Article and Find Full Text PDF