809 results match your criteria: "Weill Cornell Graduate School of Medical Sciences[Affiliation]"

The hydrophobicity of the CARD8 N-terminus tunes inflammasome activation.

Cell Chem Biol

September 2024

Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Mounting evidence indicates that proteotoxic stress is a primary activator of the CARD8 inflammasome, but the complete array of signals that control this inflammasome have not yet been established. Notably, we recently discovered that several hydrophobic radical-trapping antioxidants (RTAs), including JSH-23, potentiate CARD8 inflammasome activation through an unknown mechanism. Here, we report that these RTAs directly alkylate several cysteine residues in the N-terminal disordered region of CARD8.

View Article and Find Full Text PDF

Epithelial responses to fungal pathogens.

Curr Opin Microbiol

August 2024

Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Article Synopsis
  • Epithelial cells play a crucial role in immune responses against fungal infections, particularly in the lungs and mucosal surfaces.
  • They respond to certain signals like IL-1 and interferon to manage immune cell activity and fungal destruction.
  • Understanding how these cells interact with fungi is essential for developing new treatments for fungal infections.
View Article and Find Full Text PDF

Notch ligands and receptors, including JAG1/2, DLL1/4, and Notch1/3, are enriched on macrophages (MΦs), fibroblast-like synoviocytes (FLS), and/or endothelial cells in rheumatoid arthritis (RA) compared with normal synovial tissues (ST). Power Doppler ultrasound-guided ST studies reveal that the Notch family is highly involved in early active RA, especially during neovascularization. In contrast, the Notch family is not implicated during the erosive stage, evidenced by their lack of correlation with radiographic damage in RA ST.

View Article and Find Full Text PDF

Vaccinia Virus: Mechanisms Supporting Immune Evasion and Successful Long-Term Protective Immunity.

Viruses

May 2024

Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA.

Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies.

View Article and Find Full Text PDF
Article Synopsis
  • Tau acetylation at lysine 174 is linked to neurodegenerative diseases like Alzheimer's, FTLD, and TBI, and targeting it could improve cognitive function.
  • In a study using PS19 mice, treatment with anti-ac-tauK174 antibodies reduced tau pathology and improved neurobehavioral outcomes, even after TBI.
  • Results showed that anti-ac-tauK174 not only mitigated memory impairment and neurodegeneration but also altered gene expression in brain cells, indicating its potential as a therapeutic approach for tau-related conditions.
View Article and Find Full Text PDF

The neurons of the three cerebellar nuclei (CN) are the primary output neurons of the cerebellum. The excitatory neurons (e) of the medial (m) CN (eCNm) were recently divided into molecularly defined subdomains in the adult; however, how they are established during development is not known. We define molecular subdomains of the mouse embryonic eCNm using single-cell RNA-sequencing and spatial expression analysis, showing that they evolve during embryogenesis to prefigure the adult.

View Article and Find Full Text PDF

Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors.

Cancer Cell

July 2024

Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA. Electronic address:

Tumor-specific CD8 T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4 T cells can be enlisted to overcome CD8 T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8 and CD4 T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4 T cells must engage with CD8 T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8 T cell cytotoxicity and cancer cell elimination.

View Article and Find Full Text PDF

The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation.

View Article and Find Full Text PDF

Reciprocal suppression between TGFβ signaling and TNF stimulation finetunes the macrophage inflammatory response.

FASEB J

July 2024

Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.

Inflammation plays a crucial role in the development of various disease conditions or is closely associated with them. Inflammatory cytokines like TNF often engage in interactions with other cytokines and growth factors, including TGFβ, to orchestrate inflammatory process. Basal/endogenous TGFβ signaling is a universal presence, yet the precise way TNF communicates with TGFβ signaling to regulate inflammation and influence inflammatory levels in macrophages has remained elusive.

View Article and Find Full Text PDF

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes.

View Article and Find Full Text PDF

Type I interferon exacerbates Mycobacterium tuberculosis induced human macrophage death.

EMBO Rep

July 2024

Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.

Type I interferons (IFN-I) are implicated in exacerbation of tuberculosis (TB), but the mechanisms are unclear. Mouse macrophages infected with Mycobacterium tuberculosis (Mtb) produce IFN-I, which contributes to their death. Here we investigate whether the same is true for human monocyte-derived macrophages (MDM).

View Article and Find Full Text PDF

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available.

View Article and Find Full Text PDF

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers.

View Article and Find Full Text PDF

Seeing is believing: a breakthrough to visualize necrosomes in the tissue.

EMBO Mol Med

July 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Detection of necroptosis in the tissue has been a long-standing roadblock in determining the disease states and pathological conditions associated with this inflammatory form of cell death. In this issue of EMBO Molecular Medicine, Chiou et al report a definitive method for necroptosis detection in situ (Chiou et al, 2024). The authors utilize this technical advance to unequivocally identify necroptosis lesions within the intestinal epithelium, and further reveal the simultaneous presence of distinct apoptotic and necroptotic lesions in human inflammatory bowel disease.

View Article and Find Full Text PDF

Comprehensively studying metabolism requires the measurement of metabolite levels. However, in contrast to the broad availability of gene expression data, metabolites are rarely measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier to metabolic discovery, we propose a Bayesian framework ("UnitedMet") which leverages the empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite levels from widely available transcriptomic data.

View Article and Find Full Text PDF

Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates.

View Article and Find Full Text PDF

Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human β-cells.

View Article and Find Full Text PDF

Mutations in CHCHD10, a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation.

View Article and Find Full Text PDF

N4BP1 coordinates ubiquitin-dependent crosstalk within the IκB kinase family to limit Toll-like receptor signaling and inflammation.

Immunity

May 2024

Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

The ubiquitin-binding endoribonuclease N4BP1 potently suppresses cytokine production by Toll-like receptors (TLRs) that signal through the adaptor MyD88 but is inactivated via caspase-8-mediated cleavage downstream of death receptors, TLR3, or TLR4. Here, we examined the mechanism whereby N4BP1 limits inflammatory responses. In macrophages, deletion of N4BP1 prolonged activation of inflammatory gene transcription at late time points after TRIF-independent TLR activation.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA tails for homologous recombination. In meiosis, this 5'-to-3' resection involves initial nicking by the Mre11-Rad50-Xrs2 complex (MRX) plus Sae2, then exonucleolytic digestion by Exo1. Chromatin remodeling adjacent to meiotic DSBs is thought to be necessary for resection, but the relevant remodeling activity was unknown.

View Article and Find Full Text PDF

Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology.

Cell Host Microbe

May 2024

Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA. Electronic address:

The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa.

View Article and Find Full Text PDF

The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ.

View Article and Find Full Text PDF

Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Leveraging several recent advances, we assembled a prime editing platform capable of high-efficiency substitution editing across a set of engineered prime editing guide RNAs (epegRNAs) and corresponding target sequences (80% median intended editing). Then, using a custom library of 240,000 epegRNAs targeting >17,000 codons with 175 different substitution types, we benchmarked our platform for functional interrogation of small substitution variants (1-3 nucleotides) targeted to essential genes.

View Article and Find Full Text PDF

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors.

View Article and Find Full Text PDF

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La.

View Article and Find Full Text PDF