947 results match your criteria: "Weill Cornell Graduate School[Affiliation]"

As cancers progress, they become increasingly aggressive-metastatic tumours are less responsive to first-line therapies than primary tumours, they acquire resistance to successive therapies and eventually cause death. Mutations are largely conserved between primary and metastatic tumours from the same patients, suggesting that non-genetic phenotypic plasticity has a major role in cancer progression and therapy resistance. However, we lack an understanding of metastatic cell states and the mechanisms by which they transition.

View Article and Find Full Text PDF

The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ.

View Article and Find Full Text PDF

The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic-NEPs and their adaptive reprogramming. Single cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are key regulators of gene expression. Here, we introduce EuPRI (Eukaryotic Protein-RNA Interactions) - a freely available resource of RNA motifs for 34,736 RBPs from 690 eukaryotes. EuPRI includes binding data for 504 RBPs, including newly collected RNAcompete data for 174 RBPs, along with thousands of reconstructed motifs.

View Article and Find Full Text PDF

The MRE11 complex (comprising MRE11, RAD50, and NBS1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic mutant mouse strain ( ) was highly susceptible to oncogene-induced breast cancer. Here we used a mammary organoid system to examine which MRE11-dependent responses are tumor-suppressive.

View Article and Find Full Text PDF

Transgelin 2 guards T cell lipid metabolism and antitumour function.

Nature

November 2024

Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.

Mounting effective immunity against pathogens and tumours relies on the successful metabolic programming of T cells by extracellular fatty acids. Fatty-acid-binding protein 5 (FABP5) has a key role in this process by coordinating the efficient import and trafficking of lipids that fuel mitochondrial respiration to sustain the bioenergetic requirements of protective CD8 T cells. However, the mechanisms that govern this immunometabolic axis remain unexplored.

View Article and Find Full Text PDF

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2). Glucocorticoids (GC), widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2 and M2 transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets.

View Article and Find Full Text PDF

Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation.

View Article and Find Full Text PDF

Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life.

View Article and Find Full Text PDF

Enterococcal-host interactions in the gastrointestinal tract and beyond.

FEMS Microbes

September 2024

Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States.

Article Synopsis
  • Enterococci are bacteria primarily found in the gastrointestinal tract, but they can also affect other organs like the heart, liver, and kidneys, potentially leading to severe infections.
  • Their ability to thrive in various environments is due to their metabolic flexibility, which helps them adapt and persist in different tissues.
  • To transition from harmless residents to harmful pathogens, enterococci have developed strategies to overcome challenges like nutrient competition and the immune response, utilizing specific molecular pathways for adhesion and colonization.
View Article and Find Full Text PDF
Article Synopsis
  • - SARS-CoV-2 has evolved to evade current monoclonal antibodies (mAbs), emphasizing the need for more resilient treatments that can neutralize various viral strains.
  • - A new human mAb called VIR-7229 has shown the ability to effectively neutralize multiple variants of SARS-CoV-2 and other related viruses, due to its unique targeting of a critical viral region known as the receptor-binding motif (RBM).
  • - VIR-7229 demonstrates a high resistance to the emergence of virus escape mutants, making it a promising candidate for future therapies against evolving coronaviruses.
View Article and Find Full Text PDF

High-grade serious ovarian cancer (HGSOC) is an aggressive malignancy that remains refractory to current immunotherapies. While advanced stage disease has been extensively studied, the cellular and molecular mechanisms that promote early immune escape in HGSOC remain largely unexplored. Here, we report that primary HGSO tumors program neutrophils to inhibit T cell anti-tumor function by activating the endoplasmic reticulum (ER) stress sensor IRE1α.

View Article and Find Full Text PDF

Identifying cancer therapy resistance is a key time-saving tool for physicians. Part of chemotherapy resistance includes senescence, a persistent state without cell division or cell death. Chemically inducing senescence with the combination of trametinib and palbociclib (TP) yields several tumorigenic and prometastatic factors in pancreatic cancer models with many potential antibody-based targets.

View Article and Find Full Text PDF

Pathogen encounter can result in epigenetic remodeling that shapes disease caused by heterologous pathogens. Here, we examined innate immune memory in the context of commonly circulating respiratory viruses. Single-cell analyses of airway-resident immune cells in a disease-relevant murine model of SARS-CoV-2 recovery revealed epigenetic reprogramming in alveolar macrophages following infection.

View Article and Find Full Text PDF

TCF1 progenitor CD8 T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1 progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2 CD8 T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-C glucose carbon tracing.

View Article and Find Full Text PDF

Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling.

View Article and Find Full Text PDF

A pleiotropic recurrent dominant variant causes a complex multisystemic disease.

Sci Adv

September 2024

Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.

Article Synopsis
  • The study investigates a specific genetic variant in the IP3 receptor that results in a significant disorder affecting multiple systems, characterized by immunodeficiency and disturbed calcium release in cells.
  • The variant (c.7570C>T, p.Arg2524Cys) leads to cellular defects, particularly impacting T cells, and is shown to affect calcium regulation and mitochondrial function, evidenced in laboratory models.
  • Patients exhibited a range of symptoms beyond immunodeficiency, such as ectodermal dysplasia and short stature, suggesting that this genetic mutation plays a unique and broader role in disease compared to previously documented cases.
View Article and Find Full Text PDF

Purpose: Malignant peripheral nerve sheath tumor (MPNST) is a highly aggressive subtype of soft-tissue sarcoma with a high propensity to metastasize and extremely limited treatment options. Loss of the RAS-GAP NF1 leads to sustained RAF/MEK/ERK signaling in MPNST. However, single-agent MEK inhibitors (MEKi) have failed to elicit a sustained inhibition of the MAPK signaling pathway in MPNST.

View Article and Find Full Text PDF

Factors such as obesity, alcohol consumption, and tobacco use are associated with both increased psoriasis severity and inadequate response to systemic and biologic therapies. Obesity is linked to chronic inflammation, which can contribute to psoriasis pathogenesis. Fixed-dose therapies may have reduced efficacy in patients with a higher body mass index, while weight-based dosing can increase the burden of drug-specific side effects.

View Article and Find Full Text PDF

Keratinocytes, the dominant cell type in the melanoma microenvironment during tumor initiation, exhibit diverse effects on melanoma progression. Using a zebrafish model of melanoma and human cell co-cultures, we observed that keratinocytes undergo an Epithelial-Mesenchymal Transition (EMT)-like transformation in the presence of melanoma, reminiscent of their behavior during wound healing. Surprisingly, overexpression of the EMT transcription factor Twist in keratinocytes led to improved overall survival in zebrafish melanoma models, despite no change in tumor initiation rates.

View Article and Find Full Text PDF

Distinct clinical outcomes and biological features of specific KRAS mutants in human pancreatic cancer.

Cancer Cell

September 2024

Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA. Electronic address:

KRAS mutations in pancreatic ductal adenocarcinoma (PDAC) are suggested to vary in oncogenicity but the implications for human patients have not been explored in depth. We examined 1,360 consecutive PDAC patients undergoing surgical resection and find that KRAS mutations are enriched in early-stage (stage I) disease, owing not to smaller tumor size but increased node-negativity. KRAS tumors are associated with decreased distant recurrence and improved survival as compared to KRAS.

View Article and Find Full Text PDF

SREBP2 restricts osteoclast differentiation and activity by regulating IRF7 and limits inflammatory bone erosion.

Bone Res

August 2024

Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA.

Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss.

View Article and Find Full Text PDF

Nucleolytic resection of DNA ends is critical for homologous recombination, but its mechanism is not fully understood, particularly in mammalian meiosis. Here we examine roles of the conserved MRN complex (MRE11, RAD50, and NBS1) through genome-wide analysis of meiotic resection in mice with various MRN mutations, including several that cause chromosomal instability in humans. Meiotic DSBs form at elevated levels but remain unresected if is conditionally deleted, thus MRN is required for both resection initiation and regulation of DSB numbers.

View Article and Find Full Text PDF

Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system.

View Article and Find Full Text PDF

Transthiolation (also known as transthioesterification) reactions are used in the biosynthesis of acetyl coenzyme A, fatty acids and polyketides, and for post-translational modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. For the Ub pathway, E1 enzymes catalyse transthiolation from an E1~Ub thioester to an E2~Ub thioester. Transthiolation is also required for transfer of Ub from an E2~Ub thioester to HECT (homologous to E6AP C terminus) and RBR (ring-between-ring) E3 ligases to form E3~Ub thioesters.

View Article and Find Full Text PDF