18 results match your criteria: "WasserCluster Lunz-Inter-university Centre for Aquatic Ecosystem Research[Affiliation]"

How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum.

J Environ Manage

March 2024

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.

Damming of rivers poses a significant threat to freshwater ecosystems. Previous studies about the impact of damming on river ecosystems have mostly focused on large dams, with the impact of small dams largely unknown. Further, while the impacts of dams on aquatic communities have been widely studied, the effect on energy flow across river food webs remains unclear.

View Article and Find Full Text PDF

Eutrophication and loss of riparian shading influence food quality and trophic relation in stream food webs.

Water Res

February 2024

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.

Eutrophication induced by excessive inputs of nutrient is one of the main stressors in aquatic ecosystems. Deforestation in riparian zones alter riparian shading, which together with eutrophication is expected to exert a complex control over stream food webs. We manipulated two levels of riparian shading (open canopy vs.

View Article and Find Full Text PDF

Assessment of the impact of dams on aquatic food webs using stable isotopes: Current progress and future challenges.

Sci Total Environ

December 2023

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.

Dams have disrupted natural river systems worldwide and although population and community level effects on aquatic biota have been well documented, food web responses remain poorly understood and difficult to characterize. The application of stable isotope analysis (SIA) provides a means to assess the effect of dams on food webs. Here we review the effect of dams on aquatic food webs using SIA, aiming to detect knowledge gaps in the field of dam impacts on aquatic food webs and propose a conceptual framework to help formulate hypotheses about dam impacts on food webs guided by food web theory.

View Article and Find Full Text PDF

It has been suggested that a trade-off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, , from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes.

View Article and Find Full Text PDF

Interference competition over food and territory can shape population structure and habitat use within and between species. The introduction of invasive species often leads to novel competitive interactions over shared resources and invaders can eventually exclude the native species from preferred habitats. Invasive brook trout (Salvelinus fontinalis) introduced to northern Europe have excluded native brown trout (Salmo trutta) from numerous headwater streams.

View Article and Find Full Text PDF

Tracing the flow of dietary energy sources, especially in systems with a high degree of omnivory, is an ongoing challenge in ecology. In aquatic systems, one of the persistent challenges is in differentiating between autochthonous and allochthonous energy sources to top consumers. Bulk carbon stable isotope values of aquatic and terrestrial prey often overlap, making it difficult to delineate dietary energy pathways in food webs with high allochthonous prey subsidies, such as in many northern temperate waterbodies.

View Article and Find Full Text PDF

Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli.

View Article and Find Full Text PDF

There is growing recognition of the importance of food quality over quantity for aquatic consumers. In streams and rivers, most previous studies considered this primarily in terms of the quality of terrestrial leaf litter and importance of microbial conditioning. However, many recent studies suggest that algae are a more nutritional food source for riverine consumers than leaf litter.

View Article and Find Full Text PDF

The relationship between membrane fatty acid content and mitochondrial efficiency differs within- and between- omega-3 dietary treatments.

Mar Environ Res

January 2021

Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France; UMR 7266 LIENSs, 2 Rue Olympe de Gouges 17000 La Rochelle, France.

An important, but underappreciated, consequence of climate change is the reduction in crucial nutrient production at the base of the marine food chain: the long-chain omega-3 highly unsaturated fatty acids (n-3 HUFA). This can have dramatic consequences on consumers, such as fish as they have limited capacity to synthesise n-3 HUFA de novo. The n-3 HUFA, such as docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), are critical for the structure and function of all biological membranes.

View Article and Find Full Text PDF

Bivalves' physiological functions (i.e. growth, reproduction) are influenced by environmental variability that can be concomitant with trophic resource variations in terms of quality and quantity.

View Article and Find Full Text PDF

Fatty acids as dietary biomarkers in mangrove ecosystems: Current status and future perspective.

Sci Total Environ

October 2020

Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States of America.

The paradigm that mangrove carbon supports secondary production in mangrove and adjacent habitats has been debated in recent years. Fatty acids (FA) are one of the classic biomarkers that have been frequently applied to track mangrove carbon pathways and assess trophic relationships. However, most previous studies did not evaluate the validity, potential and limitations of FA as biomarkers.

View Article and Find Full Text PDF

Reduced exploration capacity despite brain volume increase in warm-acclimated common minnow.

J Exp Biol

June 2020

Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.

While evidence suggests that warming may impact cognition of ectotherms, the underlying mechanisms remain poorly understood. A possible but rarely considered mechanism is that the metabolic response of ectotherms to warming is associated with changes in brain morphology and function. Here, we compared aerobic metabolism, brain volume, boldness and accuracy of maze solving of common minnows () acclimated for 8 months to either their current optimal natural (14°C) or warm (20°C) water temperature.

View Article and Find Full Text PDF

Resource polymorphism-whereby ancestral generalist populations give rise to several specialised morphs along a resource gradient-is common where species colonise newly formed ecosystems. This phenomenon is particularly well documented in freshwater fish populations inhabiting postglacial lakes formed at the end of the last ice age. However, knowledge on how such differential exploitation of resources across contrasting habitats might be reflected in the biochemical compositions of diverging populations is still limited, though such patterns might be expected.

View Article and Find Full Text PDF

Aquatic macroinvertebrates play an important functional role in energy transfer in food webs, linking basal food sources to upper trophic levels that include fish, birds, and humans. However, the trophic coupling of nutritional quality between macroinvertebrates and their food sources is still poorly understood. We conducted a field study in subalpine streams in Austria to investigate how the nutritional quality (measured by long-chain polyunsaturated fatty acids, LC-PUFAs) in macroinvertebrates changes relative to their basal food sources.

View Article and Find Full Text PDF

Coastal wetlands are increasingly recognised for their pivotal role in mitigating the growing threats from cyclones (including hurricanes) in a changing climate. There is, however, insufficient information about the economic value of coastal wetlands for cyclone mitigation, particularly at regional scales. Analysis of data from 1990-2012 shows that the variation of cyclone frequencies is related to EI Niño strength in the Pacific Ocean adjacent to Australia, but not China.

View Article and Find Full Text PDF

Algal polyunsaturated fatty acids (PUFA), essential for somatic growth and reproduction of aquatic animals, are influenced by ambient environmental conditions, including light and nutrients. Few studies have addressed the extent to which changes in algal PUFA can influence stream herbivore PUFA profiles and the implications for stream food webs. We manipulated subtropical stream periphyton by applying two light levels (open and shaded canopy) and two nutrient regimes (ambient and enriched) to investigate the response of PUFA and somatic growth in stream herbivores.

View Article and Find Full Text PDF

1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton.

View Article and Find Full Text PDF