9 results match your criteria: "Walter Reed Army Institute of Research and Henry M. Jackson Foundation[Affiliation]"

The EPIICAL project: an emerging global collaboration to investigate immunotherapeutic strategies in HIV-infected children.

J Virus Erad

June 2015

University Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy ; Chair of Pediatrics, Department of Systems Medicine, University of Rome 'Tor Vergata', Italy.

The EPIICAL (Early-treated Perinatally HIV-infected Individuals: Improving Children's Actual Life with Novel Immunotherapeutic Strategies) project arises from the firm belief that perinatally infected children treated with suppressive antiretroviral therapy (ART) from early infancy represent the optimal population model in which to study novel immunotherapeutic strategies aimed at achieving ART-free remission. This is because HIV-infected infants treated within 2-3 months of life have a much reduced viral reservoir size, and rarely show HIV-specific immunity but preserve normal immune development. The goal of EPIICAL is the establishment of an international collaboration to develop a predictive platform using this model to select promising HIV therapeutic vaccine candidates, leading to prioritisation or deprioritisation of novel immunotherapeutic strategies.

View Article and Find Full Text PDF

From the use of antiretroviral therapy to prevent mother-to-child transmission to the possibility of HIV cure hinted at by the Mississippi baby experience, paediatric HIV infection has been pivotal to our understanding of HIV pathogenesis and management. Daily medication and indefinite antiretroviral therapy is recommended for children infected with HIV. Maintenance of life-long adherence is difficult and the incidence of triple-class virological failure after initiation of antiretroviral therapy increases with time.

View Article and Find Full Text PDF

Distal leg epidermal nerve fiber density (ENFD) is a validated predictor of HIV sensory neuropathy (SN) risk. We assessed how ENFD is impacted by initiation of first-time antiretroviral therapy (ART) in subjects free of neuropathy and how it is altered when mitochondrial toxic nucleoside medications are used as part of ART. Serial changes in proximal thigh and distal leg ENFD were examined over 72 weeks in 150 Thai subjects randomized to a regimen of stavudine (d4T) switching to zidovudine (ZDV) at 24 weeks vs ZDV vs tenofovir (TDF) for the entire duration of study, all given in combination with nevirapine.

View Article and Find Full Text PDF

Antibody-dependent enhancement (ADE) is implicated in severe, usually secondary, dengue virus (DV) infections. Preexisting heterotypic antibodies, via their Fc-gamma receptor (FcγR) interactions, may increase disease severity through enhanced target cell infection. Greater numbers of infected target cells may contribute to higher viremia and excess cytokine levels often observed in severe disease.

View Article and Find Full Text PDF

Dengue virus infections are an emerging global threat. Severe dengue infection is manifested as dengue hemorrhagic fever and dengue shock syndrome, both of which can be fatal complications. Factors predisposing to complicated disease and pathogenesis of severe infections are discussed.

View Article and Find Full Text PDF

The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure.

View Article and Find Full Text PDF

The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection.

View Article and Find Full Text PDF

Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC.

View Article and Find Full Text PDF

Because mucosal immune responses may be important in protection against human immunodeficiency virus type 1 (HIV-1), HIV-1-specific immune responses at mucosal sites in natural infection were compared. Total antibody concentrations and HIV-1-specific binding antibody responses in four distinct mucosal sites and serum were assessed in 41 HIV-infected and 19 HIV-seronegative women. HIV-1 gp160-specific IgG responses were detected in >99% of mucosal samples in infected subjects, with the highest titers in genital secretions.

View Article and Find Full Text PDF