6 results match your criteria: "WA State University[Affiliation]"

Mechanisms of intestinal pharmacokinetic natural product-drug interactions.

Drug Metab Rev

August 2024

Department of Pharmaceutical Sciences, WA State University, Spokane, Washington, USA.

The growing co-consumption of botanical natural products with conventional medications has intensified the need to understand potential effects on drug safety and efficacy. This review delves into the intricacies of intestinal pharmacokinetic interactions between botanical natural products and drugs, such as alterations in drug solubility, permeability, transporter activity, and enzyme-mediated metabolism. It emphasizes the importance of understanding how drug solubility, dissolution, and osmolality interplay with botanical constituents in the gastrointestinal tract, potentially altering drug absorption and systemic exposure.

View Article and Find Full Text PDF

Prediction of breeding values is central to plant breeding and has been revolutionized by the adoption of genomic selection (GS). Use of machine- and deep-learning algorithms applied to complex traits in plants can improve prediction accuracies. Because of the tremendous increase in collected data in breeding programs and the slow rate of genetic gain increase, it is required to explore the potential of artificial intelligence in analyzing the data.

View Article and Find Full Text PDF

Context: There is a paucity of data describing the impact of type of beverage (coffee versus energy drink), different rates of consumption and different temperature of beverages on the pharmacokinetic disposition of caffeine. Additionally, there is concern that inordinately high levels of caffeine may result from the rapid consumption of cold energy drinks.

Objective: The objective of this study was to compare the pharmacokinetics of caffeine under various drink temperature, rate of consumption and vehicle (coffee versus energy drink) conditions.

View Article and Find Full Text PDF

The purpose of this study was to determine whether sex differences in the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) are due to activational effects of gonadal hormones. Rats were sham-gonadectomized (sham-GDX) or gonadectomized (GDX). GDX females received no hormone replacement (GDX+0), estradiol (GDX+E2), progesterone (GDX+P4), or both (GDX+E2/P4).

View Article and Find Full Text PDF

Biochemical regulation of sleep and sleep biomarkers.

J Clin Sleep Med

October 2011

Sleep and Performance Research Center, WWAMI Medical Education Program, WA State University, Spokane, WA 99164, USA.

Symptoms commonly associated with sleep loss and chronic inflammation include sleepiness, fatigue, poor cognition, enhanced sensitivity to pain and kindling stimuli, excess sleep and increases in circulating levels of tumor necrosis factor α (TNF) in humans and brain levels of interleukin-1 β (IL1) and TNF in animals. Cytokines including IL1 and TNF partake in non-rapid eye movement sleep (NREMS) regulation under physiological and inflammatory conditions. Administration of exogenous IL1 or TNF mimics the accumulation of these cytokines occurring during sleep loss to the extent that it induces the aforementioned symptoms.

View Article and Find Full Text PDF

Tolerance develops to the antinociceptive effects of morphine with repeated microinjections into the ventrolateral periaqueductal gray (PAG). This tolerance could be caused by adaptations within the PAG or anywhere along the descending pathway (rostral ventromedial medulla to spinal cord). If tolerance is caused by a change along the descending pathway, then tolerance should develop to direct activation of PAG output neurons.

View Article and Find Full Text PDF