2,444 results match your criteria: "WA 99352; ‡Heinrich Heine University[Affiliation]"

Artificial Intelligence Transforming Post-Translational Modification Research.

Bioengineering (Basel)

December 2024

Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA.

Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In light of these implications, we have explored how artificial intelligence (AI) can be utilized in researching PTMs.

View Article and Find Full Text PDF

Differential responses of plant and microbial respiration to extreme precipitation and drought during spring and summer in the Eurasian meadow steppe.

Environ Res

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunbuir Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Increasing extreme precipitation and drought events along changes in their seasonal patterns due to climate change are expected to have profound consequences for carbon cycling. However, how these climate extremes impact ecosystem respiration (R) and whether these impacts differ between seasons remain unclear. Here, we reveal the responses of R and its components to extreme precipitation and drought in spring and summer by conducting a five-year manipulative experiment in a temperate meadow steppe.

View Article and Find Full Text PDF

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer.

J Colloid Interface Sci

December 2024

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF

Sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.

View Article and Find Full Text PDF

Discovery of a layered multiferroic compound CuMnSiTe with strong magnetoelectric coupling.

Sci Adv

January 2025

2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.

Article Synopsis
  • Multiferroic materials combine ferroelectricity and magnetism, making them promising for applications like magnetic memory and spin transistors.
  • A new multiferroic chalcogenide semiconductor, CuMnSiTe, demonstrates unique properties such as a polar monoclinic crystal structure and canted antiferromagnetism below 35 K, along with significant magnetoelectric coupling.
  • Observations include high electric polarization at low temperatures and the potential for room-temperature ferroelectricity, marking it as a significant advancement in multiferroic materials research.
View Article and Find Full Text PDF

Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.

View Article and Find Full Text PDF

Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them.

View Article and Find Full Text PDF

Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation.

View Article and Find Full Text PDF
Article Synopsis
  • Nonstructural carbohydrates (NSC) in leaves relate to photosynthesis and respiration, influencing plant strategies.
  • A study involving 114 species showed that total NSC concentrations varied widely but generally didn't correlate with leaf gas exchange or economic traits.
  • However, species with higher photosynthesis had shorter NSC residence times, indicating that daily carbon gain is mainly exported rather than stored.
View Article and Find Full Text PDF

The plant community has a strong track record of RNA sequencing technology deployment, which combined with the recent advent of spatial platforms (e.g. 10× genomics) has resulted in an explosion of single-cell and nuclei datasets that can be positioned in an in situ context within tissues (e.

View Article and Find Full Text PDF

Evolution of sulfonated tannins in red wines with ageing: A targeted metabolomic approach.

Food Chem

February 2025

Department of Viticulture and Enology, University of California, Davis, CA 95616, United States of America. Electronic address:

During wine ageing, tannins could react with sulfur dioxide to form sulfonated flavanols which are anticipated to alter tannin binding to proteins contributing to the reduction of astringency during ageing. Previous studies have identified or quantified monomeric and dimeric sulfonated flavanols in aged wines, but the evolution of sulfonated tannins has been lacking. Here, we quantified sulfonated tannins in three Washington state vineyards over a 20-year period, employing targeted LC-QToF analysis.

View Article and Find Full Text PDF

The Natural Products Magnetic Resonance Database (NP-MRD) for 2025.

Nucleic Acids Res

January 2025

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

The Natural Products Magnetic Resonance Database (NP-MRD; https://np-mrd.org) is a comprehensive, freely accessible, web-based resource for the deposition, distribution, extraction, and retrieval of nuclear magnetic resonance (NMR) data on natural products (NPs). The NP-MRD was initially established to support compound de-replication and data dissemination for the NP community.

View Article and Find Full Text PDF

Identification of novel microcystins in algal extracts by a liquid chromatography-high-resolution mass spectrometry data analysis pipeline.

Harmful Algae

November 2024

Emergency Response Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.

Background: Microcystins are an emergent public health problem. These toxins are secondary metabolites of harmful cyanobacterial blooms, with blooms becoming more prevalent with eutrophication of water. Exposure to microcystins can result in sickness, liver damage, and even death.

View Article and Find Full Text PDF

The human plasma lipidome response to exertional heat tolerance testing.

Lipids Health Dis

November 2024

Biological Sciences Division, Richland, WA, 99352, USA.

Background: The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset.

View Article and Find Full Text PDF

Progress on Photo-, Electro-, and Photoelectro-Catalytic Conversion of Recalcitrant Polyethylene, Polypropylene, and Polystyrene - A Review.

ChemSusChem

November 2024

Institute for Integrated Catalysis, Pacific Northwest National Laboratory, WSU-PNNL Bioproducts Institute, 902 Battelle Blvd, Richland, WA 99352, USA.

Recalcitrant waste plastics such a polyethylene, polypropylene, and polystyrene are difficult to recycle and are mostly disposed of in landfills and eventually leached into the environmental as micro- and nano-plastics. This review explores how photo-, electro-, and combined photoelectro-catalytic processes can assist in the degradation and upcycling of waste plastic into different chemicals and mitigate their release to the environment. In this work, we discuss how the different reaction mechanisms proceed, explore the current relevant literature, and highlight the developments needed to advance the field.

View Article and Find Full Text PDF

Caused by both eukaryotic dinoflagellates and prokaryotic cyanobacteria, harmful algal blooms are events of severe ecological, economic, and public health consequence, and their incidence has become more common of late. Despite coordinated research efforts to identify and characterize the genomes of harmful algal bloom-causing organisms, the genomic basis and evolutionary origins of paralytic shellfish toxins produced by harmful algal blooms remain at best incomplete. The paralytic shellfish toxin saxitoxin has an especially complex genomic architecture and enigmatic phylogenetic distribution, spanning dinoflagellates and multiple cyanobacterial genera.

View Article and Find Full Text PDF

Ameloblastin binding to biomimetic models of cell membranes - A continuum of intrinsic disorder.

Arch Oral Biol

January 2025

Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:

Objective: A 37-residue amino acid sequence corresponding to the segment encoded by exon-5 of murine ameloblastin (Ambn), AB2 (Y67-Q103), has been implicated with membrane association, ameloblastin self-assembly, and amelogenin-binding. Our aim was to characterize, at the residue level, the structural behavior of AB2 bound to chemical mimics of biological membranes using NMR spectroscopy.

Design: To better define the structure of AB2 using NMR-based methods, recombinant C- and N-labelled AB2 (*AB2) was prepared and data collected free in solution and with deuterated dodecylphosphocholine (dPC) micelles, deuterated bicelles, and both small and large unilamellar vesicles.

View Article and Find Full Text PDF

Neural manifolds summarize the intrinsic structure of the information encoded by a population of neurons. Advances in experimental techniques have made simultaneous recordings from multiple brain regions increasingly commonplace, raising the possibility of studying how these manifolds relate across populations. However, when the manifolds are nonlinear and possibly code for multiple unknown variables, it is challenging to extract robust and falsifiable information about their relationships.

View Article and Find Full Text PDF

Mineral-associated organic matter is heterogeneous and structured by hydrophobic, charged, and polar interactions.

Proc Natl Acad Sci U S A

November 2024

Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352.

The formation of mineral-associated organic matter (MAOM) is a key phenomenon that may explain the slow turnover rates of carbon in soil organic matter (SOM). Despite this, important details pertaining to the structure and dynamics of MAOM remain unknown. In the present study, we use replica-exchange molecular dynamics simulations to gain insight into the structure of MAOM on the surface of prototypical phyllosilicate clay and Fe-oxide minerals, montmorillonite and goethite, fine-grained minerals that strongly impact soil carbon dynamics in temperate and tropical regions, respectively.

View Article and Find Full Text PDF

2D Nitrogen-Doped Graphene Materials for Noble Gas Separation.

Small

November 2024

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic.

Noble gases, notably xenon, play a pivotal role in diverse high-tech applications. However, manufacturing xenon is an inherently challenging task, due to its unique properties and trace abundance in the Earth's atmosphere. Consequently, there is a pressing need for the development of efficient methods for the separation of noble gases.

View Article and Find Full Text PDF

Weathering influences the ice nucleation activity of microplastics.

Nat Commun

November 2024

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.

Microplastics are being increasingly detected in the atmosphere at altitudes relevant to mixed-phase cloud formation. However, the extent to which microplastics, along with their dynamic surface properties resulting from environmental weathering, could influence atmospheric microphysical processes remains largely unexplored. Here, through a series of ice nucleation experiments and droplet freezing assays, we highlight the capability of model polyethylene microplastics to induce heterogeneous ice nucleation via immersion freezing under atmospherically relevant conditions.

View Article and Find Full Text PDF

A molecular view of peptoid-induced acceleration of calcite growth.

Proc Natl Acad Sci U S A

November 2024

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352.

The extensive deposits of calcium carbonate (CaCO) generated by marine organisms constitute the largest and oldest carbon dioxide (CO) reservoir. These organisms utilize macromolecules like peptides and proteins to facilitate the nucleation and growth of carbonate minerals, serving as an effective method for CO sequestration. However, the precise mechanisms behind this process remain elusive.

View Article and Find Full Text PDF

Reliability studies of vanadium redox flow batteries: upper limit voltage effect.

RSC Adv

October 2024

Battery Materials & Systems Group, Pacific Northwest National Laboratory Richland WA 99352 USA

Article Synopsis
  • All-vanadium redox flow batteries (VRFBs) are being explored for their long-lasting energy storage potential but struggle with performance decline over time.
  • This study examines how higher upper voltage limits (1.6 V, 1.7 V, and 1.8 V) affect the performance and degradation of a VRFB cell during extended testing (500 cycles).
  • Results show that increased voltage leads to decreased capacity and efficiency, with significant degradation observed particularly at 1.8 V, emphasizing the need for optimized voltage limits to enhance VRFB longevity and inform future predictive models.
View Article and Find Full Text PDF

Chemical and spectroscopic characterization of plutonium tetrafluoride.

Dalton Trans

December 2024

Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.

Anhydrous plutonium tetrafluoride is an important intermediate in the production of metallic Pu. This historically important compound is also known to exist in at least two distinct, yet understudied hydrate forms, PuF·HO(s) (0.5 ≤ ≤ 2) and PuF·2.

View Article and Find Full Text PDF