11 results match your criteria: "Virginia Commonwealth University Richmond VA 23284 USA.[Affiliation]"

Here we report the synthesis and genetic encoding of the lysine post translational modifications, β-hydroxybutyryl-lysine, isobutyryl-lysine and isovaleryl-lysine. The ability to obtain a homogenous protein samples with site-specific incorporation of these acylated lysine residues can serve as a powerful tool to study the biological role of lysine post translational modifications.

View Article and Find Full Text PDF

Water desalination solar steam generation is one of the most important technologies to address the increasingly pressing global water scarcity. Materials for solar photothermal energy conversion are highly sought after for their cost savings, environmental friendliness and broad utility in many applications including domestic water heating and solar-driven desalination. Herein, we report the successful development of metal-free, low weight and cost effective functionalized carbonized cotton (CC) fibers for efficient solar water desalination and wastewater treatment.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF), an indispensable bioactive protein that sustains self-renewal and pluripotency in stem cells, is vital for mouse embryonic stem cell (mESC) culture. Extensive research is conducted on reliable alternatives for LIF as its clinical application in stable culture and large-scale expansion of ESCs is limited by its instability and high cost. However, few studies have sought to replace LIF with nanoparticles to provide a xeno-free culture condition.

View Article and Find Full Text PDF

This report presents a three-dimensional (3-D) magnetoelectrokinetic model to investigate a new approach to magnetic-field assisted dielectrophoresis for ultra-high precision and parallel assembly of ferromagnetic Ni nanowires (NWs) on silicon chips. The underlying assembly methodology relies on a combination of electric and magnetic fields to manipulate single nanowires from a colloidal suspension and yield their assembly on top of electrodes with better than 25 nm precision. The electric fields and the resultant dielectrophoretic forces are generated through the use of patterned gold nanoelectrodes, and deliver long-range forces that attract NWs from farther regions of the workspace and bring them in proximity to the nanoelectrodes.

View Article and Find Full Text PDF

Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg(ii) and Pb(ii) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg(ii) ions from water.

View Article and Find Full Text PDF

Excessive decreases in bone volume (BV) and bone mineral density (BMD) can lead to osteoporosis, potentially hindering implant osseointegration. Bisphosphonates are commonly used to combat osteoporosis by slowing osteoclast-mediated resorption; however, functional osteoclasts are integral to bone remodeling and, thus, implant osseointegration, potentially contraindicating bisphosphonate use during implantation. To optimize the use of implant technologies in patients with compromised bone structure and metabolism, we need a more complete understanding of the biological response to surface design.

View Article and Find Full Text PDF

Abdominal wall hernia repair is one of the most common general surgeries nowadays. Surgical meshes used in hernia repair indeed improved the outcomes, but complications like chronic pain or hernia recurrence partly caused by mechanical mismatch cannot be ignored. This work designed six warp-knitted polypropylene (PP) meshes and found the properties of surgical meshes could be improved to better mimic the performances of human abdominal wall by designing meshes with appropriate textile structures.

View Article and Find Full Text PDF

Copper oxide (CuO) nanoparticles have received considerable interest as active and inexpensive catalysts for various gas-solid reactions. The CuO reducibility and surface reactivity are of crucial importance for the high catalytic activity. Herein, we demonstrate that the reducibility and stability of CuO nanoparticles can be controlled and tailored for the high catalytic activity of CO oxidation.

View Article and Find Full Text PDF

The ever-increasing global energy consumption necessitates the development of efficient energy conversion and storage devices. Nitrogen-doped porous carbons as electrode materials for supercapacitors feature superior electrochemical performances compared to pristine activated carbons. Herein, a facile synthetic strategy including solid-state mixing of benzimidazole as an inexpensive single-source precursor of nitrogen and carbon and zinc chloride as a high temperature solvent/activator followed by pyrolysis of the mixture ( = 700-1000 °C under Ar) is introduced.

View Article and Find Full Text PDF

Starting from an upright standing posture and reaching for a target that requires some forward bending of the trunk can involve many different configurations of the trunk and limb segments. We sought to determine if configurations of the limb and trunk segments during our standardized full-body reaching tasks were influenced by the visual environment. This paper examined movement patterns of healthy participants ([Formula: see text], eight female and nine male) performing full body reaching tasks to: 1) real-world targets; 2) virtual targets presented on a 3-D television; and 3) virtual targets presented using a head-mounted display.

View Article and Find Full Text PDF