47 results match your criteria: "Vietnam Atomic Energy Institute[Affiliation]"

Over the last 20 years, we have dramatically improved hydrometeorological data including isotopes, but are we making the most of this data? Stable isotopes of oxygen and hydrogen in the water molecule (stable water isotopes - SWI) are well known tracers of the global hydrological cycle producing critical climate science. Despite this, stable water isotopes are not explicitly included in influential climate reports (e.g.

View Article and Find Full Text PDF

The present paper reported on the analysis of structural defects and their influence on the red-emitting γ-AlO:Mn,Mg nanowires using positron annihilation spectroscopy (PAS). The nanowires were synthesized by hydrothermal method and low-temperature post-treatment using glucose as a reducing agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and photoluminescence excitation (PLE) were utilized, respectively, for determining the structural phase, morphology and red-emitting intensity in studied samples.

View Article and Find Full Text PDF

Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due to anthropogenic activity and climatic change. Baseline data to inform sustainable management options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions from lake or wetland deposits) can provide crucial long-term perspectives needed to identify drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource managers using three current issues facing tropical delta regions: hydrology and sediment supply, salinisation and nutrient pollution.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) production via oxygen (O) reduction reaction (ORR) in pure water (HO) through graphitic carbon nitrides (g-CN)-based piezo-photocatalysts is an exciting approach in many current studies. However, the low Lewis-acid properties of g-CN limited the catalytic performance because of the low O adsorption efficacy. To overcome this challenge, the interaction of g-CN precursors with various solvents are utilized to synthesize g-CN, possessing multiple nitrogen-vacant species via thermal shocking polymerization.

View Article and Find Full Text PDF

Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium.

View Article and Find Full Text PDF

Transfer of natural radionuclides from soil to water spinach (Ipomoea aquatica Forssk) in Hanoi, Vietnam have been investigated using a low background gamma spectrometer with an HPGe detector (Model-GC5019). Twenty pairs of soil and water spinach samples in two environmental conditions, i.e.

View Article and Find Full Text PDF

This study explored the treatment of Leucomalachite Green (LMG) solutions using an electron beam and sodium persulfate (NaSO), employing Box-Behnken design (BBD) to optimize operational variables such as absorbed dose, initial pH and NaSO concentration. The findings highlighted an optimal absorbed dose of 4.5 kGy, a NaSO concentration of 1.

View Article and Find Full Text PDF

Uranyl ammonium carbonate precipitation and conversion into triuranium octaoxide.

Heliyon

February 2024

Hydrometallurgy Innovations Team, CSIRO Mineral Resources (CMR), 7 Conlon St. Waterford WA 6102, Perth, Australia.

Uranyl ammonium carbonate (AUC), with the chemical formula UOCO·2(NH)CO, plays a crucial role in the wet conversion of uranium hexafluoride (UF) into uranium dioxide (UO) or triuranium octaoxide (UO) for nuclear fuel production, and is used in commercial and research reactors. In this study, the precipitation of AUC from uranyl fluoride (UOF) solution and its subsequent conversion into UO powder were investigated. AUC precipitation was performed at uranium concentrations in UOF solution of 80-120 gL, ammonium carbonate (NH)CO concentrations of 200-400 gL, and (NH)CO to U (C/U) ratios of 5-9.

View Article and Find Full Text PDF

An intercomparison of neutron personal dose equivalent measured by the Harshaw thermoluminescence neutron dosimeters (TLDs) between the National Institute of Metrology of China (NIM) and the Institute for Nuclear Science and Technology of Vietnam (INST) was performed. Three sets of TLDs (each set consisting of five TLDs) were prepared for each laboratory. Each set was then irradiated to the corresponding same nominal standard value of neutron personal dose equivalent, H(10), of 1.

View Article and Find Full Text PDF

The present study introduces FeO-coated lapatinib-labeled Sm nanoparticles (denoted as FeO@lapatinib-Sm) as a promising avenue for advancing breast cancer treatment. The radiolabeled nanoparticles combine various attributes, offering enhanced therapeutic precision. The integration of lapatinib confers therapeutic effects and targeted delivery.

View Article and Find Full Text PDF

ZSM-5 zeolite was successfully synthesized from bentonite clay sourced from Lam Dong Province, Vietnam, using the hydrothermal method at 170 °C for 18 h. The synthesized ZSM-5 (SiO/AlO ratio ~ 34) exhibited a single phase with high crystallinity (91.8%), and a clear and uniform shape.

View Article and Find Full Text PDF

In this study, the gamma ray-induced Maillard reaction method was carried out for chitosan (CTS) and glucosamine (GA) to improve the water solubility and antibacterial activity. The mixture solution of CTS and GA was exposed to gamma rays at a dose of 25 kGy and freeze-dried to obtain a Maillard reaction product (MRP) powder. The physicochemical and biological properties of the CTS-GA MRP powder were investigated.

View Article and Find Full Text PDF

A multi-detector comparison to determine convergence of measured relative output factors for small field dosimetry.

Phys Eng Sci Med

March 2024

Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia.

The TRS-483 Code of Practice (CoP) provides generic relative output correction factors, [Formula: see text], for a range of detectors and beam energies as used in small field dosimetry. In this work, the convergence of the relative output factors (ROFs) for 6 MV X-ray beams with and without flattening filters was investigated under different combinations of beam collimation and published detector correction factors. The SFD, PFD and CC04 (IBA) were used to measure ROFs of a TrueBeam STx linear accelerator with small fields collimated by the high-definition MLC, which has 2.

View Article and Find Full Text PDF

The winter and summer monsoons in Southeast Asia are important but highly variable sources of rainfall. Current understanding of the winter monsoon is limited by conflicting proxy observations, resulting from the decoupling of regional atmospheric circulation patterns and local rainfall dynamics. These signals are difficult to decipher in paleoclimate reconstructions.

View Article and Find Full Text PDF

Chitosan (CS) is only soluble in weak acid medium, thereby limiting its wide utilisation in the field of biomedicine, food, and agriculture. In this report, we present a method for preparing water-soluble CS oligosaccharides (COSs) at high concentration (∼10%, w/v) via the oxidative hydrolysis of CS powder with molecular weight (Mw) ∼90,000 g/mol) in 2% HO solution at ambient temperature by a two-step process, namely, the heterogeneous hydrolysis step and homogeneous hydrolysis step. The resultant COSs were characterised by gel permeation chromatography (GPC), fourier transforms infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), proton nuclear magnetic resonance spectroscopy (H NMR) and X-ray diffraction (XRD) spectroscopy.

View Article and Find Full Text PDF

In this work, we present the results of the ortho-positronium (o-Ps) annihilation lifetimes and nitrogen adsorption measurements for different porous materials and an approach for describing the annihilation of o-Ps in a pore, which results in a surface-volume formula (SVF) for calculating the pore-related o-Ps lifetime. This proposed formula gives the relationship between the o-Ps annihilation rate and the effective pore radius, bulk composition, and pore structure, including pore geometry and topology. The pore-related o-Ps lifetimes of different materials calculated by the SVF are consistent with experimental results for both micro- and mesopores (and macropores) with different geometries and topologies.

View Article and Find Full Text PDF

In the present study, Lam Dong bentonite clay was utilized as a novel resource to effectively synthesize microporous ZSM-5 zeolite (Si/Al ∼ 40). The effects of aging and hydrothermal treatment on the crystallization of ZSM-5 were carefully investigated. Herein, the aging temperatures of RT, 60, and 80 °C at time intervals of 12, 36, and 60 h, followed by high temperature hydrothermal treatment (170 °C) for 3-18 h were studied.

View Article and Find Full Text PDF

Aerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface.

View Article and Find Full Text PDF

Searching for thiosemicarbazone derivatives with the potential to inhibit acetylcholinesterase for the treatment of Alzheimer's disease (AD) is an important current goal. The QSAR, QSAR, and QSAR models were constructed using binary fingerprints and physicochemical (PC) descriptors of 129 thiosemicarbazone compounds screened from a database of 3791 derivatives. The and values for the QSAR, QSAR, and QSAR models are greater than 0.

View Article and Find Full Text PDF

Cobalt-promoted molybdenum sulfide (CoMoS) is known as a promising catalyst for H evolution reaction and hydrogen desulfurization reaction. This material exhibits superior catalytic activity as compared to its pristine molybdenum sulfide counterpart. However, revealing the actual structure of cobalt-promoted molybdenum sulfide as well as the plausible contribution of a cobalt promoter is still challenging, especially when the material has an amorphous nature.

View Article and Find Full Text PDF

This study examines whether fresh apples from the United States, New Zealand, and China sold in the markets of Vietnam can be distinguished based on the stable isotopic signatures of their water and carbon (δH, δO, and δC). The δH and δO in apples from the United States were found to average - 100.1 ‰ and - 10.

View Article and Find Full Text PDF

Manganese dioxide nanomaterials have wide applications in many areas from catalysis and Li-ion batteries to gas sensing. Understanding the crystallization pathways, morphologies, and formation of defects in their structure is particularly important but still a challenging issue. Herein, we employed an arsenal of X-ray diffraction (XRD), scanning electron microscopy (SEM), neutron diffraction, positron annihilation spectroscopies, and calculations to investigate the evolution of the morphology and structure of α-MnO nanomaterials prepared via reduction of KMnO solution with CHOH prior to being annealed in air at 200-600 °C.

View Article and Find Full Text PDF

In 2015 and 2016, atmospheric transport modeling challenges were conducted in the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification, however, with a more limited scope with respect to emission inventories, simulation period and number of relevant samples (i.e., those above the Minimum Detectable Concentration (MDC)) involved.

View Article and Find Full Text PDF

Due to the depositional environment, river deltas are said to act as filters and sinks for pollutants. However, many deltas are also densely populated and rapidly urbanizing, creating new and increased sources of pollutants. These sources pose the risk of tipping these environments from pollution sinks to sources, to the world's oceans.

View Article and Find Full Text PDF

Optimization of Oligomer Chitosan/Polyvinylpyrrolidone Coating for Enhancing Antibacterial, Hemostatic Effects and Biocompatibility of Nanofibrous Wound Dressing.

Polymers (Basel)

August 2022

Tissue Engineering and Regenerative Medicine Laboratory, Department of Tissue Engineering and Regenerative Medicine, School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.

A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS.

View Article and Find Full Text PDF