15,105 results match your criteria: "Veterinary Research Institute[Affiliation]"

Zn inhibits PEDV replication by inducing autophagy through the Akt-mTOR pathway.

Vet Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces diarrhea in pigs, leading to severe economic losses in the global pig industry. Currently, effective antiviral treatments for porcine epidemic diarrhea (PED) are rarely available for clinical use. Zinc (Zn), an essential mineral, is known to reduce diarrhea in piglets transitioning from milk to solid feed by modulating immune system activity.

View Article and Find Full Text PDF

The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1) and the intrinsically disordered N-terminal domain (NTD-N) of the N-protein plays a crucial role in regulating viral replication and pathogenicity.

View Article and Find Full Text PDF

In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis.

J Anim Sci Biotechnol

December 2024

Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.

Background: Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains.

View Article and Find Full Text PDF

Effects of Yersinia pseudotuberculosis outer membrane vesicles on Pseudomonas aeruginosa antigens immune response.

PLoS One

December 2024

Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China.

Outer membrane vesicles (OMVs) are immunogenic self-adjuvanting vesicles produced by Gram-negative bacteria such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis. While the effects of OMVs on different antigens immune stimulation are not clear. In this study, we constructed recombinant Yersinia pseudotuberculosis ΔlpxL strain,with pBlue-PcrV and pBlue-OprF/I, and then purified ΔlpxL rOMVPcrV (rOMVyp2P)and ΔlpxL rOMVOprF/I (rOMVyp2F) and analyzed its effect on immune response and protection against Pseudomonas aeruginosa PAO1 infection.

View Article and Find Full Text PDF

Structural insights into Semiliki forest virus receptor binding modes indicate novel mechanism of virus endocytosis.

PLoS Pathog

December 2024

State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.

The Very Low-Density Lipoprotein Receptor (VLDLR) is an entry receptor for the prototypic alphavirus Semliki Forest Virus (SFV). However, the precise mechanisms underlying the entry of SFV into cells mediated by VLDLR remain unclear. In this study, we found that of the eight class A (LA) repeats of the VLDLR, only LA2, LA3, and LA5 specifically bind to the native SFV virion while synergistically promoting SFV cell attachment and entry.

View Article and Find Full Text PDF

Structural basis of different neutralization capabilities of monoclonal antibodies against H7N9 virus.

J Virol

December 2024

State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.

Neutralizing antibodies (nAbs) are important for the treatment of emerging viral diseases and for effective vaccine development. In this study, we generated and evaluated three nAbs (1H9, 2D7, and C4H4) against H7N9 influenza viruses and found that they differ in their ability to inhibit viral attachment, membrane fusion, and egress. We resolved the cryo-electron microscopy (cryo-EM) structures of H7N9 hemagglutinin (HA) alone and in complex with the nAb antigen-binding fragments (Fabs) and identified the HA head-located epitope for each nAb, thereby revealing the molecular basis and key residues that determine the differences in these nAbs in neutralizing H7N9 viruses.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is the leading pathogen in the maxillo-facial region, affecting millions of individuals worldwide. Its periodic reactivation aligns with the most common course pattern of periodontal disease. The present study used RNA sequencing to investigate the transcriptomes of human gingival fibroblasts (HGFs) following HSV-1 infection from the early to late stages (12-72 h).

View Article and Find Full Text PDF

Comparative RNA sequencing analysis of three Capripoxvirus infections in an immortalized hTERT-bOEC cell model.

Virology

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China. Electronic address:

Capripoxviruses (CaPVs), such as lumpy skin disease, sheep pox, and goat pox, cause significant production and economic losses and are major constraints to the growth of livestock production in endemic areas. Understanding the pathogenic mechanism of CaPVs and their translation into clinical applications depends on the availability of a suitable cell line. In this study, we used a lentiviral packaging system to establish an immortalized hTERT-bOEC cell line by ectopic introduction of human telomerase reverse transcriptase (hTERT).

View Article and Find Full Text PDF

Brucella is an intracellular parasitic pathogen that causes the worldwide zoonotic disease brucellosis. The type IV secretion system (T4SS) is utilized to secrete various effectors to help Brucella form Brucella-containing vacuoles within the cell and accomplish intracellular trafficking and replication. Brucella has fewer recognized effector proteins than other intracellular parasites in the Proteobacteria, indicating that Brucella may contain a large number of unidentified effector proteins.

View Article and Find Full Text PDF

Japanese encephalitis virus NS3 captures the protein translation element by interacting with HNRNPH1 to promote viral replication.

Int J Biol Macromol

December 2024

Animal-derived Food Safety Innovation Team, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Japanese encephalitis caused by Japanese encephalitis virus (JEV) infection leads to the central nervous system disorder in human and swine. Viruses utilize the host protein synthesis mechanisms to efficiently translate their RNAs. Herein, we demonstrated that the host transcription factor SOX10 downregulated an RNA-binding protein heterogeneous nuclear ribonucleoprotein H (HNRNPH1) during JEV infection.

View Article and Find Full Text PDF

Mastitis is a multi-etiological disease that significantly impacts milk production and reproductive efficiency. It is highly prevalent in dairy populations subjected to intensive selection for higher milk yield and where inbreeding is common. The issue is amplified by climate change and poor hygiene management, making disease control challenging.

View Article and Find Full Text PDF

Dynamics of antibiotic resistance in poultry farms via multivector analysis.

Poult Sci

December 2024

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, 573 Tulip Street, Changchun 130122, Jilin, PR China.. Electronic address:

This study examines the distribution of microbial communities and antibiotic resistance genes (ARGs) across various vectors in poultry farm environments. The results show that airborne particulate matter (PM) and soil harbor the highest counts of microbial genes, exceeding those found in poultry visceral samples, which display lower microbial diversity and ARG levels. This highlights environmental vectors, particularly soil and PM, as major reservoirs for ARGs.

View Article and Find Full Text PDF

(IBR), characterized by acute respiratory lesions in cattle, is a major infectious disease caused by (BoAHV-1). Control of this disease is primarily depending on vaccination. Madin-Darby bovine kidney cells (MDBK) being the main host cells and the important production platform for IBR vaccines.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is a significant swine disease with no effective vaccine due to high viral mutation rates. This study investigates a natural PRRS outbreak through molecular, pathological, and serological analyses. Nineteen affected pigs were clinically examined, and 10 underwent post-mortem examination.

View Article and Find Full Text PDF

A novel Brucella T4SS effector RS15060 acts on bacterial morphology, lipopolysaccharide core synthesis and host proinflammatory responses, which is beneficial for Brucella melitensis virulence.

Microbiol Res

December 2024

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241,  China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu 225309, China. Electronic address:

Brucella relies on the type IV secretion system (T4SS) to establish replication niches within host cells. However, the Brucella T4SS effectors and their functions have not been fully identified. In this study, we investigated the function of Brucella RS15060, a novel T4SS effector discovered in our previous study, on the bacterial biological characteristics and pathogenesis by construction of the gene deletion and complementation strains.

View Article and Find Full Text PDF

Type VI secretion system 2 (T6SS2) of Vibrio parahaemolyticus is required for cell adhesion and autophagy in macrophages; however, other phenotypes conferred by this T6SS have not been thoroughly investigated. We deleted TssL2, a key component of T6SS2 assembly, to explore the role of the T6SS2 in environmental adaptation and virulence. TssL2 deletion reduced Hcp2 secretion, suggesting that TssL2 played an important role in activity of functional T6SS2.

View Article and Find Full Text PDF

Autophagy promotes p72 degradation and capsid disassembly during the early phase of African swine fever virus infection.

J Virol

December 2024

Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China.

During viral infections, autophagy functions as a cell-intrinsic defense mechanism by facilitating the delivery of virions or viral components to the endosomal/lysosomal pathway for degradation. In this study, we report that internalized African swine fever virus (ASFV) virions enter autolysosomes during the early phase of viral infection. Autophagy selectively targets the major capsid protein p72 within the ASFV virion.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases.

View Article and Find Full Text PDF

Alterations in Ileal Microbiota and Fecal Metabolite Profiles of Chickens with Immunity to .

Animals (Basel)

December 2024

Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China.

Coccidiosis, caused by different species of parasites, is an economically important disease in poultry and livestock worldwide. This study aimed to investigate the changes in the ileal microbiota and fecal metabolites in chickens after repeated infections with low-dose . The chickens developed solid immunity against a high dose of infection after repeated infections with low-dose .

View Article and Find Full Text PDF

Duck Tembusu virus (DTMUV) is an emerging flavivirus that has inflicted significant economic losses on China's poultry industry. Rapid and accurate detection of DTMUV is crucial for effective prevention and control measures. In this study, we developed a novel, rapid visual detection assay that combines reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) with the CRISPR/Cas12a system for on-site detection of DTMUV.

View Article and Find Full Text PDF

The basis of all improvement in (re)production performance of animals and plants lies in the genetic variation. The underlying genetic variation can be further explored through investigations using molecular markers including single nucleotide polymorphism (SNP) and microsatellite, and more recently structural variants like copy number variations (CNVs). Unlike SNPs, CNVs affect a larger proportion of the genome, making them more impactful vis-à-vis variation at the phenotype level.

View Article and Find Full Text PDF

Infection with porcine epidemic diarrhea virus (PEDV) results in enormous economic damage to the global swine industry. PEDV starts its life cycle by binding to the receptors of host cells and adsorbing onto the cellular surfaces. However, it is still unknown how PEDV adsorbs onto the surface of host cells and the mechanism beneath the interplay of host cell transmembrane protein with PEDV proteins.

View Article and Find Full Text PDF

The usefulness of botulinum toxin injections in oncology - Clinical and laboratory perspectives.

Eur J Pharmacol

December 2024

Department of Quality Assessment and Processing of Animal Products, University of Life Sciences of Lublin, Akademicka 13, 20-950, Lublin, Poland.

The use of botulinum toxins in various oncological conditions brings long-term results in the treatment of chronic pain without burdening internal organs, as is the case with the use of opioids. Numerous reports indicate a possible apoptotic effect achieved in vitro and in vivo. Most literature data suggest that using botulinum toxins to support oncological treatment gives positive results, and in most cases, it is free of side effects.

View Article and Find Full Text PDF

Equine lentivirus Gag protein degrades mitochondrial antiviral signaling protein via the E3 ubiquitin ligase Smurf1.

J Virol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Equine infectious anemia virus (EIAV) and HIV-1 are both members of the genus and are similar in virological characters. EIAV is of great concern in the equine industry. Lentiviruses establish a complex interaction with the host cell to counteract the antiviral responses.

View Article and Find Full Text PDF

Global initiatives aim to curb tuberculosis (TB) by developing efficient vaccines and drugs against Mycobacterium tuberculosis (M. tb). The pressing need for innovative and swift anti-TB drug screening methods, due to the drawbacks of traditional approaches, is met by employing Structure-based virtual screening (SBVS) and machine learning (ML) in drug discovery.

View Article and Find Full Text PDF