154 results match your criteria: "Vanderbilt Center for Addiction Research[Affiliation]"

While preclinical work has aimed to outline the neural mechanisms of drug addiction, it has overwhelmingly focused on male subjects. There has been a push in recent years to incorporate females into existing addiction models; however, males and females often have different behavioral strategies, making it important to not only include females, but to develop models that assess the factors that comprise female drug addiction. Traditional self-administration models often include light or tone cues that serve as discriminative stimuli and/or consequent stimuli, making it nearly impossible to disentangle the effects of cue learning, the cues themselves, and acute effects of psychostimulant drugs.

View Article and Find Full Text PDF

Cell-type and projection-specific dopaminergic encoding of aversive stimuli in addiction.

Brain Res

June 2019

Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Electronic address:

Article Synopsis
  • Drug addiction is a significant global health issue with few treatment options, necessitating a deeper understanding of the neural circuit dysfunctions involved.
  • Research has primarily focused on the dysregulation of the mesolimbic dopamine pathway, which affects both positive reinforcement and decision-making related to negative outcomes.
  • The proposed model highlights how both rewarding and aversive stimuli influence motivation and behavior, suggesting that drug exposure disrupts the processing of these stimuli, leading to harmful behaviors like compulsive drug seeking despite negative consequences.
View Article and Find Full Text PDF

Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors.

View Article and Find Full Text PDF

Persistent "Sag" in Prefrontal Cortex Function following Adolescent Binge Drinking.

J Neurosci

November 2018

Department of Pharmacology, Vanderbilt Center for Addiction Research, and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville Tennessee 37232

View Article and Find Full Text PDF

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents.

View Article and Find Full Text PDF

Mechanisms underlying prelimbic prefrontal cortex mGlu/mGlu-dependent plasticity and reversal learning deficits following acute stress.

Neuropharmacology

January 2019

Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN, 37232, USA. Electronic address:

Stress can precipitate or worsen symptoms of many psychiatric illnesses. Dysregulation of the prefrontal cortex (PFC) glutamate system may underlie these disruptions and restoring PFC glutamate signaling has emerged as a promising avenue for the treatment of stress disorders. Recently, we demonstrated that activation of metabotropic glutamate receptor subtype 3 (mGlu) induces a postsynaptic form of long-term depression (LTD) that is dependent on the activity of another subtype, mGlu.

View Article and Find Full Text PDF

Background: Dysregulation of arousal is symptomatic of numerous psychiatric disorders. Previous research has shown that the activity of dopamine (DA) neurons in the ventral periaqueductal gray (vPAG) tracks with arousal state, and lesions of vPAG cells increase sleep. However, the circuitry controlling these wake-promoting DA neurons is unknown.

View Article and Find Full Text PDF

Cocaine addiction is characterized by aberrant plasticity of the mesolimbic dopamine circuit, leading to dysregulation of motivation to seek and take drug. Despite the significant toll that cocaine use disorder exacts on society, there are currently no available pharmacotherapies. We have recently identified granulocyte-colony stimulating factor (G-CSF) as a soluble cytokine that alters the behavioral response to cocaine and which increases dopamine release from the ventral tegmental area (VTA).

View Article and Find Full Text PDF
Article Synopsis
  • Stress plays a significant role in triggering neuropsychiatric disorders and relapse in addiction, suggesting that targeting the stress response may help treat substance use disorders with medications like anxiolytics.
  • The research highlights that α-adrenergic receptors (α-ARs) in the brain, particularly in the extended amygdala, are important for modulating stress responses, and these receptors function similarly even in non-noradrenergic areas.
  • The study found that guanfacine, an α2A-AR agonist, enhances neuronal activity in the dorsal bed nucleus of the stria terminalis (dBNST) and has the potential to manage craving and anxiety, although its impact on relapse remains unclear due to competing brain actions.
View Article and Find Full Text PDF

Deficits in motivation and cognition are hallmark symptoms of multiple psychiatric diseases. These symptoms are disruptive to quality of life and often do not improve with available medications. In recent years there has been increased interest in the role of the immune system in neuropsychiatric illness, but to date no immune-related treatment strategies have come to fruition.

View Article and Find Full Text PDF

Transient upregulation of GluN2B-containing NMDA receptors (R) in the nucleus accumbens (NAc) is proposed as an intermediate to long-term AMPAR plasticity associated with persistent cocaine-related behaviors. However, cell type- and input-specific contributions of GluN2B underlying lasting actions of cocaine remain to be elucidated. We utilized GluN2B cell type-specific knockouts and optogenetics to deconstruct the role of GluN2B in cocaine-induced NAc synaptic and behavioral plasticity.

View Article and Find Full Text PDF

Forced abstinence from chronic two bottle-choice ethanol drinking produces the development of negative affective states in female C57BL/6J mice. We previously reported that this disrupted behavior is acutely reversed by administration of ketamine 30 min-prior to testing. Here we assessed whether ketamine can be used as an inoculant against the development of abstinence- dependent affective disturbances.

View Article and Find Full Text PDF

Background: Global changes in gene expression underlying circuit and behavioral dysregulation associated with cocaine addiction remain incompletely understood. Here, we show how a history of cocaine self-administration (SA) reprograms transcriptome-wide responses throughout the brain's reward circuitry at baseline and in response to context and/or cocaine re-exposure after prolonged withdrawal (WD).

Methods: We assigned male mice to one of six groups: saline/cocaine SA + 24-hour WD or saline/cocaine SA + 30-day WD + an acute saline/cocaine challenge within the previous drug-paired context.

View Article and Find Full Text PDF

In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning.

View Article and Find Full Text PDF

Glutamatergic transmission in the nucleus accumbens shell (NAcSh) is a substrate for reward learning and motivation. Metabotropic glutamate (mGlu) receptors regulate NAcSh synaptic strength by inducing long-term depression (LTD). Inputs from prefrontal cortex (PFC) and medio-dorsal thalamus (MDT) drive opposing motivated behaviors yet mGlu receptor regulation of these synapses is unexplored.

View Article and Find Full Text PDF

Cocaine addiction is characterized by dysfunction in reward-related brain circuits, leading to maladaptive motivation to seek and take the drug. There are currently no clinically available pharmacotherapies to treat cocaine addiction. Through a broad screen of innate immune mediators, we identify granulocyte-colony stimulating factor (G-CSF) as a potent mediator of cocaine-induced adaptations.

View Article and Find Full Text PDF

Cocaine abuse disrupts dopamine system function, and reduces cocaine inhibition of the dopamine transporter (DAT), which results in tolerance. Although tolerance is a hallmark of cocaine addiction and a DSM-V criterion for substance abuse disorders, the molecular adaptations producing tolerance are unknown, and testing the impact of DAT changes on drug taking behaviors has proven difficult. In regard to treatment, amphetamine has shown efficacy in reducing cocaine intake; however, the mechanisms underlying these effects have not been explored.

View Article and Find Full Text PDF

Cross-talk between the epigenome and neural circuits in drug addiction.

Prog Brain Res

June 2018

Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, United States. Electronic address:

Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors.

View Article and Find Full Text PDF

Corticotropin releasing factor (CRF) is a neuropeptide that plays a key role in behavioral and physiological responses to stress. A large body of animal literature implicates CRF acting at type 1 CRF receptors (CRFR1) in consumption by alcohol-dependent subjects, stress-induced reinstatement of alcohol seeking, and possibly binge alcohol consumption. These studies have encouraged recent pilot studies of CRFR1 antagonists in humans with alcohol use disorder (AUD).

View Article and Find Full Text PDF

Behavioral manifestations of drug-seeking behavior are causally linked to alterations of synaptic strength onto nucleus accumbens (NAc) medium spiny neurons (MSN). Although neuron-driven changes in physiology and behavior are well characterized, there is a lack of knowledge of the role of the immune system in mediating such effects. Toll-like receptor 4 (TLR4) is a pattern recognition molecule of the innate immune system, and evidence suggests that it modulates drug-related behavior.

View Article and Find Full Text PDF

A Comprehensive Approach to the Opioid Epidemic.

Obstet Gynecol

July 2017

Dr. Patrick is from the Department of Pediatrics, Department of Health Policy, the Mildred Stahlman Division of Neonatology, the Vanderbilt Center for Health Services Research, and the Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN; email:

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis in drug-associated behavior and affect: A circuit-based perspective.

Neuropharmacology

August 2017

Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, USA; Department of Psychiatry, Vanderbilt University School of Medicine, USA; Department of Pharmacology, Vanderbilt University School of Medicine, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Electronic address:

The bed nucleus of the stria terminalis was first described nearly a century ago and has since emerged as a region central to motivated behavior and affective states. The last several decades have firmly established a role for the BNST in drug-associated behavior and implicated this region in addiction-related processes. Whereas past approaches used to characterize the BNST have focused on a more general role of this region and its subnuclei in behavior, more recent work has begun to reveal its elaborate circuitry and cellular components.

View Article and Find Full Text PDF

Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience.

View Article and Find Full Text PDF