7 results match your criteria: "VIB Center for Brain and Disease Research and KU Leuven[Affiliation]"

In neurons, it is commonly assumed that mitochondrial replication only occurs in the cell body, after which the mitochondria must travel to the neuron's periphery. However, while mitochondrial DNA replication has been observed to occur away from the cell body, the specific mechanisms involved remain elusive. Using EdU-labelling in mouse primary neurons, we developed a tool to determine the mitochondrial replication rate.

View Article and Find Full Text PDF

The Hippo signaling pathway is widely considered a master regulator of organ growth because of the prominent overgrowth phenotypes caused by experimental manipulation of its activity. Contrary to this model, we show here that removing Hippo transcriptional output did not impair the ability of the mouse liver and eyes to grow to their normal size. Moreover, the transcriptional activity of the Hippo pathway effectors Yap/Taz/Yki did not correlate with cell proliferation, and hyperactivation of these effectors induced gene expression programs that did not recapitulate normal development.

View Article and Find Full Text PDF

Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm).

View Article and Find Full Text PDF

The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of and in these peritumoral hepatocytes accelerated tumor growth.

View Article and Find Full Text PDF

Paradoxical effects of mutant ubiquitin on Aβ plaque formation in an Alzheimer mouse model.

Neurobiol Aging

December 2018

Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands. Electronic address:

Amyloid-β (Aβ) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aβ peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aβ-associated factors. Efficient clearance of Aβ from the brain is thought to be important to prevent the development and progression of AD.

View Article and Find Full Text PDF

Testosterone boosts physical activity in male mice via dopaminergic pathways.

Sci Rep

January 2018

Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49 PO box 902, 3000, Leuven, Belgium.

Low testosterone (T) in men, especially its free fraction, has been associated with loss of energy. In accordance, orchidectomy (ORX) in rodents results in decreased physical activity. Still, the mechanisms through which T stimulates activity remain mostly obscure.

View Article and Find Full Text PDF

A shortened tamoxifen induction scheme to induce CreER recombinase without side effects on the male mouse skeleton.

Mol Cell Endocrinol

September 2017

Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49 PO Box 902, 3000 Leuven, Belgium. Electronic address:

The selective estrogen receptor modulator tamoxifen exerts estrogen agonistic or antagonistic actions on several tissues, including bone. The off-target effects of tamoxifen are one of the most widely recognized pitfalls of tamoxifen-inducible Cre recombinases (CreERs), potentially confounding the phenotypic findings. Still, the validation of tamoxifen induction schemes that minimize the side effects of the drug has not been addressed.

View Article and Find Full Text PDF