9 results match your criteria: "Uppsala Biocenter SLU[Affiliation]"

Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation.

View Article and Find Full Text PDF

Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components.

View Article and Find Full Text PDF

(BNYVV) and (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development.

View Article and Find Full Text PDF

Massive up-regulation of LBD transcription factors and EXPANSINs highlights the regulatory programs of rhizomania disease.

Mol Plant Pathol

October 2018

Department of Plant Biology, Uppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant Biology, 75007, Uppsala, Sweden.

Rhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion.

View Article and Find Full Text PDF

The evolutionary divergence of Potato mop-top virus (PMTV), a tri-partite, single-stranded RNA virus, is exceptionally low, based on the analysis of sequences obtained from isolates from Europe, Asia and North America. In general, RNA viruses exist as dynamic populations of closely related and recombinant genomes that are subjected to continuous genetic variation. The reason behind the low genetic variation of PMTV remains unclear.

View Article and Find Full Text PDF

Investigation of the solvent and alkoxide precursor effect on the nonhydrolytic sol-gel synthesis of oxide nanoparticles by means of an ether elimination (Bradley) reaction indicates that the best crystallinity of the resulting oxide particles is achieved on application of aprotic ketone solvents, such as acetophenone, and of smallest possible alkoxide groups. The size of the produced primary particles is always about 5 nm caused by intrinsic mechanisms of their formation. The produced particles, possessing the composition of natural highly insoluble minerals, are biocompatible.

View Article and Find Full Text PDF

The Potato mop-top virus (PMTV) genome encodes replicase, movement, and capsid proteins on three different RNA species that are encapsidated within tubular rod-shaped particles. Previously, we showed that the protein produced on translational readthrough (RT) of the coat protein (CP) gene, CP-RT, is associated with one extremity of the virus particles, and that the two RNAs encoding replicase and movement proteins can move long distance in the absence of the third RNA (RNA-CP) that encodes the capsid proteins, CP and CP-RT. Here, we examined the roles of the CP and CP-RT proteins on RNA movement using infectious clones carrying mutations in the CP and CP-RT coding domains.

View Article and Find Full Text PDF

Dasheen mosaic virus (DsMV) is an important constraint to production of cocoyam (Xanthosoma spp.) in Nicaragua. Reverse transcription polymerase chain reaction was used to amplify the coat protein (CP) region from ten Nicaraguan DsMV isolates.

View Article and Find Full Text PDF

Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis.

View Article and Find Full Text PDF