18,163,740 results match your criteria: "University or Toronto[Affiliation]"

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.

View Article and Find Full Text PDF

In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.

View Article and Find Full Text PDF

The Promotion of Oral Nicotine Pouches for Non-Smoking Cessation Purposes on TikTok.

Nicotine Tob Res

January 2025

Faculty of Public Health & Policy, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom.

Article Synopsis
  • This study examines the most popular TikTok videos related to ZYN oral nicotine pouches, highlighting their positive sentiment and the demographics of the creators who often portray the product humorously.
  • Out of the top 100 videos analyzed, which collectively amassed over 400 million views, a significant majority (79%) presented ZYN in a favorable light, with 71% of the videos featuring the product directly.
  • Only a small number of videos included disclaimers about nicotine risks, and nearly 10% of content creators had links to websites selling ONPs, indicating a commercial bias in the promotion of these products.
View Article and Find Full Text PDF

Importance: A comprehensive lipid panel is recommended by guidelines to evaluate atherosclerotic cardiovascular disease risk, but uptake is low.

Objective: To evaluate whether direct outreach including bulk orders with and without text messaging increases lipid screening rates.

Design, Setting, And Participants: Pragmatic randomized clinical trial conducted from June 6, 2023, to September 6, 2023, at 2 primary care practices at an academic health system among patients aged 20 to 75 years with at least 1 primary care visit in the past 3 years who were overdue for lipid screening.

View Article and Find Full Text PDF

Importance: Surgery is frequently required for hidradenitis suppurativa (HS) treatment, but the impact of common comorbidities such as obesity, diabetes, and smoking on outcomes has been sparsely studied.

Observations: A total of 12 studies met final inclusion criteria for investigating complication rates associated with at least 1 comorbidity. Complication rates were associated with obesity in 3 of 10 studies.

View Article and Find Full Text PDF

Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains.

Phys Rev Lett

December 2024

Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel.

Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

We introduce an effective field theory (EFT) for conformal impurity by considering a pair of transversely displaced impurities and integrating out modes with mass inversely proportional to the separation distance. This EFT captures the universal signature of the impurity seen by a heavy local operator. We focus on the case of conformal boundaries and derive universal formulas from this EFT for the boundary structure constants at high energy.

View Article and Find Full Text PDF

We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the generalized fluctuation-dissipation theorem. The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations.

View Article and Find Full Text PDF

Quantum Analog of Landau-Lifshitz-Gilbert Dynamics.

Phys Rev Lett

December 2024

Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.

The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.

View Article and Find Full Text PDF

Extended Time-Dependent Density Functional Theory for Multibody Densities.

Phys Rev Lett

December 2024

Key Laboratory for Laser Plasmas and School of Physics and Astronomy, and Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.

Time-dependent density functional theory (TDDFT) is widely used for understanding and predicting properties and behaviors of matter. As one of the fundamental theorems in TDDFT, Van Leeuwen theorem [Phys. Rev.

View Article and Find Full Text PDF

The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.

View Article and Find Full Text PDF

Dual Open Atom Interferometry for Compact and Mobile Quantum Sensing.

Phys Rev Lett

December 2024

The Australian National University, Department of Quantum Science and Technology, Canberra, Australian Capital Territory 2601, Australia.

We demonstrate an atom interferometer measurement protocol compatible with operation on a dynamic platform. Our method employs two open interferometers, derived from the same atomic source, with different interrogation times to eliminate initial velocity dependence while retaining precision, accuracy, and long term stability. We validate the protocol by measuring gravitational tides, achieving a precision of 4.

View Article and Find Full Text PDF

Defect Conformal Field Theory from Sachdev-Ye-Kitaev Interactions.

Phys Rev Lett

December 2024

Tulane University, Department of Physics and Engineering Physics, New Orleans, Louisiana 70118, USA.

The coupling between defects and extended critical degrees of freedom gives rise to the intriguing theory known as defect conformal field theory (CFT). In this work, we introduce a novel family of boundary and interface CFTs by coupling N Majorana chains with SYK_{q} interactions at the defect. Our analysis reveals that the interaction with q=2 constitutes a new marginal defect.

View Article and Find Full Text PDF

Direct Observation of All-Flat Bands Phononic Metamaterials.

Phys Rev Lett

December 2024

University of Connecticut, University of Connecticut, School of Mechanical, Aerospace, and Manufacturing Engineering, Storrs, Connecticut 06269, USA and Institute of Materials Science, Storrs, Connecticut 06269, USA.

Flat lines within a band structure represent constant frequency bands for all momentum values (i.e., they maintain zero group velocity for all wave numbers).

View Article and Find Full Text PDF

Evaporating Primordial Black Holes, the String Axiverse, and Hot Dark Radiation.

Phys Rev Lett

December 2024

Univ Coimbra, Faculdade de Ciências e Tecnologia da Universidade de Coimbra and CFisUC, Rua Larga, 3004-516 Coimbra, Portugal.

The search for primordial black holes (PBHs) with masses M≪M_{⊙} is motivated by natural early-Universe production mechanisms and that PBHs can be dark matter. For M≲10^{14}  kg, the PBH density is constrained by null searches for their expected Hawking emission (HE), the characteristics of which are, however, sensitive to new states beyond the standard model. If there exists a large number of spin-0 particles in nature, PBHs can, through HE, develop and maintain non-negligible spins, modifying the visible HE.

View Article and Find Full Text PDF

We consider many-particle diffusion in one spatial dimension modeled as "random walks in a random environment." A shared short-range space-time random environment determines the jump distributions that drive the motion of the particles. We determine universal power laws for the environment's contribution to the variance of the extreme first passage time and extreme location.

View Article and Find Full Text PDF

Quantum Thermodynamic Derivation of the Energy Resolution Limit in Magnetometry.

Phys Rev Lett

December 2024

University of Crete, Department of Physics, Heraklion 70013, Greece.

It was recently demonstrated that a multitude of realizations of several magnetic sensing technologies satisfy the energy resolution limit, which connects a quantity composed by the variance of the magnetic field estimate, the sensor volume and the measurement time, and having units of action, with ℏ. A first-principles derivation of this limit is still elusive. We here present such a derivation based on quantum thermodynamic arguments.

View Article and Find Full Text PDF

Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.

View Article and Find Full Text PDF

Exact Quantization of Topological Order Parameter in SU(N) Spin Models, N-ality Transformation and Ingappabilities.

Phys Rev Lett

December 2024

RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.

We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.

View Article and Find Full Text PDF

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Symmetry: A Fundamental Resource for Quantum Coherence and Metrology.

Phys Rev Lett

December 2024

Ens de Lyon, Université Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

We introduce a new paradigm for the preparation of deeply entangled states useful for quantum metrology. We show that, when the quantum state is an eigenstate of an operator A, observables G which are completely off diagonal with respect to A have purely quantum fluctuations, as quantified by the quantum Fisher information, namely, F_{Q}(G)=4⟨G^{2}⟩. This property holds regardless of the purity of the quantum state, and it implies that off-diagonal fluctuations represent a metrological resource for phase estimation.

View Article and Find Full Text PDF

In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.

View Article and Find Full Text PDF