37 results match your criteria: "University of Wisconsin-Madison 53706-1569.[Affiliation]"

The recommendations presented here are designed to support easier communication of NMR data and NMR structures of proteins and nucleic acids through unified nomenclature and reporting standards. Much of this document pertains to the reporting of data in journal articles; however, in the interest of the future development of structural biology, it is desirable that the bulk of the reported information be stored in computer-accessible form and be freely accessible to the scientific community in standardized formats for data exchange. These recommendations stem from an IUPAC-IUBMB-IUPAB inter-union venture with the direct involvement of ICSU and CODATA.

View Article and Find Full Text PDF

The purine nucleotide GTP causes a complex behavioral response and two distinct electrophysiological responses in the ciliated protozoan Paramecium tetraurelia. One of the two electrophysiological responses is an oscillating current that is responsible for the repeated backward swimming episodes that constitute the behavioral response to GTP. The second electrophysiological response is a sustained current whose relationship to the first is unknown.

View Article and Find Full Text PDF

Green fluorescent protein (GFP) is autofluorescent. This property has made GFP useful in monitoring in vivo activities such as gene expression and protein localization. We find that GFP can be used in vitro to reveal and characterize protein-protein interactions.

View Article and Find Full Text PDF

Effect of SERCA pump inhibitors on chemoresponses in Paramecium.

J Eukaryot Microbiol

March 1998

Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin-Madison 53706-1569, USA.

Inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-dependent ATPase) calcium pumps were used to investigate the involvement of internal Ca2+ stores in the GTP response in Paramecium. External application of these inhibitors was found to dramatically alter the typical behavioral and electrophysiological responses of Paramecium to extracellular chemical stimulation. In particular, 2,5-di-tert-butylhydroquinone (BHQ) strongly inhibited the backward swimming response of paramecia to externally applied GTP, though it did not inhibit the associated whirling response.

View Article and Find Full Text PDF

Growth control is of fundamental importance to biology in general and of critical importance to cancer research in particular. Tumors develop when control of the normal growth process is lost. The rat pituitary is a model system for control of estrogen-dependent growth.

View Article and Find Full Text PDF

Cytosolic proteins from uteri of 19-day-old rats were analyzed by an electrophoresis mobility shift assay (EMSA) using a 31 base pair DNA probe containing an estrogen-responsive element (ERE) from the vitellogenin A2 gene. EMSA identified three distinct cytosolic protein-DNA complexes that are separable by Q-Sepharose anion exchange chromatography into an estrogen receptor (ER)-containing fraction (150 mM NaCl eluate) and a non-ER-containing fraction (250 mM NaCl eluate). We thus refer to the non-ER fraction as the ERE binding protein (ERE-BP).

View Article and Find Full Text PDF

A nucleoside diphosphate kinase from Paramecium tetraurelia with protein kinase activity.

J Eukaryot Microbiol

December 1996

Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706-1569, USA.

Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila.

View Article and Find Full Text PDF

An intricate architecture of covalent bonds and noncovalent interactions appear to position the side chain of Lys 41 properly within the active site of bovine pancreatic ribonuclease A (RNase A). One of these interactions arises from Tyr 97, which is conserved in all 41 RNase A homologues of known sequence. Tyr 97 has a solvent-inaccessible side chain that donates a hydrogen bond to the main-chain oxygen of Lys 41.

View Article and Find Full Text PDF

The subunit composition and intracellular location of the two forms of cAMP-dependent protein kinase of Paramecium cilia were determined using antibodies against the 40-kDa catalytic (C) and 44-kDa regulatory (R44) subunits of the 70-kDa cAMP-dependent protein kinase purified from deciliated cell bodies. Both C and R44 were present in soluble and particulate fractions of cilia and deciliated cells. Crude cilia and a soluble ciliary extract contained a 48-kDa protein (R48) weakly recognized by one of several monoclonal antibodies against R44, but not recognized by an anti-R44 polyclonal serum.

View Article and Find Full Text PDF

The 44-kDa regulatory subunit (R44) of one form of cAMP-dependent protein kinase of Paramecium was purified, and two partial internal amino acid sequences from it were used to clone the corresponding cDNA. This R44 cDNA clone was 1022-bp long, including 978 bp of coding sequence and 7 bp and 37 bp of 5' and 3' untranslated sequences, respectively. A 1.

View Article and Find Full Text PDF

The phenotype caused by mutations that affect the timing of flowering in Arabidopsis thaliana has been most extensively analyzed in the Landsberg erecta (Ler) genetic background. In Ler, the late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed by the Ler allele of FLC. In this study, the interactions of nine mutations conferring late flowering with the FLC allele of the Columbia ecotype (FLC-Col), which does not suppress late flowering, were examined.

View Article and Find Full Text PDF

Intron-encoded endonucleases are distinguished by their ability to catalyze the cleavage of double-stranded DNA with high specificity. I-PpoI endonuclease, an intron-encoded endonuclease from the slime mold Physarum polycephalum, is a small enzyme (2 x 20 kDa) that catalyzes the cleavage of a large asymmetric DNA sequence (15 base pairs). Here, the interactions of I-PpoI with its substrate were examined during both binding (in the absence of Mg2+) and catalysis (in the presence of Mg2+).

View Article and Find Full Text PDF

Cytoplasmic free-Ca2+ levels in Escherichia coli were measured by use of the fluorescent Ca(2+)-indicator dye fura-2. Chemotactically wild-type E. coli regulated cytoplasmic free Ca2+ at approximately 100 nM when no stimuli were encountered, but changes in bacterial behavior correlated with changes in cytoplasmic free-Ca2+ concentration.

View Article and Find Full Text PDF

Transfer of a glycosylphosphatidylinositol (GPI) anchor to proteins carrying a C-terminal GPI-directing signal sequence occurs after protein translocation across the endoplasmic reticulum (ER). We describe the translocation and GPI modification of a model protein, preprominiPLAP, in ER microsomes depleted of lumenal content by high pH washing. In untreated microsomes preprominiPLAP was processed to prominiPLAP and GPI-anchored miniPLAP.

View Article and Find Full Text PDF

Protein disulfide isomerase (PDI) is an abundant protein of the endoplasmic reticulum that catalyzes the oxidation of protein sulfhydryl groups and the isomerization and reduction of protein disulfide bonds. Saccharomyces cerevisiae cells lacking PDI are inviable. PDI is a component of many different protein processing complexes, and the actual activity of PDI that is required for cell viability is unclear.

View Article and Find Full Text PDF

Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of the P-O5 bond of RNA after residues bound in the enzyme's B1 subsite. This subsite binds to cytidine 30-fold more tightly than to uridine and > 10(5)-fold more tightly than to adenine. Structural studies had suggested that the hydroxyl group of Thr45 can interact directly with the base of a bound nucleotide.

View Article and Find Full Text PDF

Bovine seminal ribonuclease (BS-RNase) is a homologue of RNase A with special biological properties, including potent immunosuppressive activity. A mutant BS-RNase was created in which His-119, the active-site residue that acts as a general acid during catalysis, was changed to an aspartic acid. H119D BS-RNase formed a dimer with quaternary structure similar to that of the wild-type enzyme but with values of kcat.

View Article and Find Full Text PDF

Bovine pancreatic ribonuclease A (RNase A) has been the object of much landmark work in biological chemistry. Yet the application of the techniques of protein engineering to RNase A has been limited by problems inherent in the isolation and heterologous expression of its gene. A cDNA library was prepared from cow pancreas, and from this library the cDNA that codes for RNase A was isolated.

View Article and Find Full Text PDF

In the ciliated protozoan Paramecium, swimming direction is regulated by voltage-gated Ca2+ channels in the ciliary membrane. In response to depolarizing stimuli, intraciliary Ca2+ rises, triggering reversal of the ciliary power stroke and backward swimming. One class of Ca(2+)-unresponsive behavioral mutants of Paramecium, atalanta mutants, cannot swim backward even though they have functional Ca2+ channels in their ciliary membrane.

View Article and Find Full Text PDF

The Wisconsin Hypoalpha Mutant (WHAM) chicken has a sex-linked mutation associated with a 90% reduction in high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I). In the present studies, we did not detect a defect in apoA-I synthesis or secretion in liver or intestine. We tested the hypothesis that apoA-I is not binding properly to lipoprotein particles and is undergoing hypercatabolism.

View Article and Find Full Text PDF

Bovine seminal ribonuclease (BS-RNase) is an unusual homolog of RNase A. Isolated from bulls as a dimer, BS-RNase has special biological properties including antispermatogenic, antitumor and immunosuppressive activities. The structural bases for these properties are unknown.

View Article and Find Full Text PDF

Ribonucleases catalyze the hydrolysis of the P-O5' bond in RNA. This reaction occurs in two steps: transphosphorylation of RNA to a 2',3'-cyclic phosphodiester intermediate and hydrolysis of this intermediate to a 3'-phosphomonoester. 31P NMR spectroscopy was used to monitor the accumulation of the 2',3'-cyclic phosphodiester intermediate during the transphosphorylation and hydrolysis reactions catalyzed by various ribonucleases and by small molecules.

View Article and Find Full Text PDF

A processive enzyme binds a polymeric substrate and catalyzes a series of similar chemical reactions along that polymer before releasing the fully modified polymer to solvent. Bovine pancreatic ribonuclease A (RNase A) is a nonprocessive endoribonuclease that binds the bases of adjacent RNA residues in three enzymic subsites: B1, B2, and B3. The B1 subsite binds only to residues having a pyrimidine base, while the B2 subsite prefers adenine and the B3 subsite prefers a purine base.

View Article and Find Full Text PDF

Structural differences between the unoccupied and ligand-occupied rat uterine estrogen receptors (ERs) were investigated using partial proteolysis followed by immunoblotting, affinity labeling, and gel filtration chromatography. Trypsin digestion of the unoccupied ER at 4 degrees C resulted in retention of 70-80% of high-affinity [3H]estradiol binding. Only two fragments of the rat ER were detected after prolonged trypsin treatment of the unoccupied ER followed by affinity labeling with [3H]tamoxifen aziridine.

View Article and Find Full Text PDF