4 results match your criteria: "University of Southampton University Road Southampton SO17 1BJ UK.[Affiliation]"

Designing and integrating Fe(iii)-based spin crossover (SCO) complexes onto substrates remains a challenging goal with only a handful of examples reported. In this work, we successfully synthesized and characterized three [Fe(qsal-OR)]NO (qsal-OR = 5-alkoxy-2-[(8-quinolylimino)methyl]phenolate) complexes, in which R = CH1, CH2, and CH3 to explore the impact of alkyl chain on the modulation of SCO activity and potential for self-assembly on a glass surface. The SCO is found to be gradual and incomplete in all cases, with the LS state more stabilised as the alkyl group shortens.

View Article and Find Full Text PDF

Animal abundance estimation is increasingly based on drone or aerial survey photography. Manual postprocessing has been used extensively; however, volumes of such data are increasing, necessitating some level of automation, either for complete counting, or as a labour-saving tool. Any automated processing can be challenging when using such tools on species that nest in close formation such as penguins.

View Article and Find Full Text PDF

A simple, modified Metal-Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, BC, LaB, TiB, TiN and a ceramic/carbon nanofiber, is described. Pt deposition using Pt(acac) as a precursor is shown to occur a mixed solid/liquid/vapour precursor phase which results in a high Pt yield of 90-92% on the support material. Pt and Pt alloy nanoparticles range 1.

View Article and Find Full Text PDF

Hybrid materials have been synthesized by anchoring a N-heterocyclic carbene (NHC) precursor on different inorganic zeolitic supports with hierarchical porosity, in particular hierarchical HZSM-5 and SAPO-5. Hierarchical porous inorganic supports have been obtained both by top-down and bottom-up approaches and the role of hierarchical porosity has been evaluated. A detailed physico-chemical characterization has been performed on the organic-inorganic hybrids using a multi-technique approach (XRD, volumetric and thermogravimetric analysis, ssNMR and FTIR) in order to establish a structure-property relationship.

View Article and Find Full Text PDF