33,716 results match your criteria: "University of Science and Technology of China)[Affiliation]"

Superconductor-Insulator Transition Induced by Precise Subtripled Vapor Chemical Gating.

J Am Chem Soc

January 2025

State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Recent progress in superconductor-insulator transition has shed light on the intermediate metallic state with unique electronic inhomogeneity. The microscopic model, suggesting that carrier spatial distribution plays a decisive role in the intermediate state, has been instrumental in understanding the quantum transition. However, the narrow carrier density window in which the intermediate state exists necessitates precise control of the gate dielectric layer, presenting a challenge to in situ map the carrier spatial distribution.

View Article and Find Full Text PDF

Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism.

View Article and Find Full Text PDF

Selective Interface Engineering with Large π-Conjugated Molecules Enables Durable Zn Anodes.

Angew Chem Int Ed Engl

January 2025

USTC: University of Science and Technology of China, School of Chemistry and Materials Science, No.96, JinZhai Road, Baohe District, 230026, Hefei, CHINA.

Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g.

View Article and Find Full Text PDF

N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.

View Article and Find Full Text PDF

The Group-Algebraic Formalism of Quantum Probability and Its Applications in Quantum Statistical Mechanics.

Entropy (Basel)

January 2025

Department of Physics and Fujian Provincial Key Laboratory of Low Dimensional Condensed Matter Physics, Xiamen University, Xiamen 361005, China.

We show that the theory of quantum statistical mechanics is a special model in the framework of the quantum probability theory developed by mathematicians, by extending the characteristic function in the classical probability theory to the quantum probability theory. As dynamical variables of a quantum system must respect certain commutation relations, we take the group generated by a Lie algebra constructed with these commutation relations as the bridge, so that the classical characteristic function defined in a Euclidean space is transformed to a normalized, non-negative definite function defined in this group. Indeed, on the quantum side, this group-theoretical characteristic function is equivalent to the density matrix; hence, it can be adopted to represent the state of a quantum ensemble.

View Article and Find Full Text PDF

Early esophageal cancer with mucosal bridging in the resting room: A case report.

World J Gastrointest Endosc

January 2025

Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China.

Background: Patients diagnosed with esophageal mucosal bridges often experience symptoms such as chest pain and dysphagia, which pose considerable challenges for endoscopic surgical interventions.

Case Summary: We present a case involving early-stage esophageal cancer discovered in a resting room, notable for the rare manifestation of esophageal mucosal bridging. Following a comprehensive multidisciplinary discussion and the development of a treatment strategy, we proceeded with endoscopic submucosal dissection for the patient.

View Article and Find Full Text PDF

Using integrative bioinformatics approaches and machine-learning strategies to identify potential signatures for atrial fibrillation.

Int J Cardiol Heart Vasc

February 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for sequencing, and the expression data of the atrial tissue were obtained.

View Article and Find Full Text PDF

This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.

View Article and Find Full Text PDF

Mechanically Triggered Protein Desulfurization.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.

View Article and Find Full Text PDF

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8T cells function in the HCC microenvironment.

Signal Transduct Target Ther

January 2025

Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Tuning synapse strength by nanocolumn plasticity.

Trends Neurosci

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China. Electronic address:

The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

Cellulose nanocrystal-based synthetic biodegradable biopolymeric composites: A comprehensive review on recent progress.

Int J Biol Macromol

January 2025

Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia; Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland.

With the worldwide transformation to a circular and low-carbon economy, the demand for sustainable materials has skyrocketed in recent years. Of various methods, sustainable and biodegradable biopolymers derived from renewable bioresources have received significant interest. Synthetic biodegradable biopolymers offer tremendous advantages over natural biodegradable biopolymers due to their stability, flexibility, and a wide range of achievable properties to fit several applications.

View Article and Find Full Text PDF

Association of anti-phosphatidylserine/prothrombin antibodies with adverse in vitro fertilization outcomes.

J Reprod Immunol

January 2025

Reproductive and Genetic Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China. Electronic address:

Anti-phosphatidylserine/prothrombin antibodies (aPS/PT) are classified as non-criteria antiphospholipid antibodies (aPL), and are strongly associated with thrombosis and pregnancy complications linked to antiphospholipid syndrome (APS). This study aimed to investigate whether aPS/PT positivity is associated with adverse outcomes in vitro fertilization (IVF). The study included infertile women who tested positive aPS/PT and underwent IVF cycles, as well as infertile controls with pure tubal etiology.

View Article and Find Full Text PDF

A humanized anti-b7h3×4-1BB bispecific antibody exerts potent antitumour effects through the activation of innate and adaptive immunity.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China. Electronic address:

Agonistic monoclonal antibodies targeting 4-1BB have shown much preclinical promise, but their clinical development has been limited by obvious toxicity or unremarkable efficacy. Here, we generated two humanized anti-B7H3 × 4-1BB bsAbs (HK056-001/002) by fusing an anti-4-1BB scFv to the C-terminus of an anti-B7H3 with an intact Fc fragment from human IgG1 or IgG4. The two bsAbs were able to stimulate the 4-1BB signaling pathway, which was strictly dependent on B7H3 expression.

View Article and Find Full Text PDF

Mn-Mn Dimers Induced Multimode Emitters in Mn-Activated AZn(PO) (A = K, Rb, and Cs) with Unique [ZnPO] Chains and [ZnO] Groups.

Inorg Chem

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.

Mn-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d electrons. However, it is still a challenge to realize the precise control of the emission of Mn ions due to site-prior occupation in a specific lattice.

View Article and Find Full Text PDF

Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

Proc Natl Acad Sci U S A

January 2025

Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs).

View Article and Find Full Text PDF

Spreading dynamics of information on online social networks.

Proc Natl Acad Sci U S A

January 2025

Department of Statistics and Data Science, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.

Social media is profoundly changing our society with its unprecedented spreading power. Due to the complexity of human behaviors and the diversity of massive messages, the information-spreading dynamics are complicated, and the reported mechanisms are different and even controversial. Based on data from mainstream social media platforms, including WeChat, Weibo, and Twitter, cumulatively encompassing a total of 7.

View Article and Find Full Text PDF

-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9-BBN.

Org Lett

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

A 1,1-hydroboration of alkynylgermanes with unique -Ge/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α-boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne-Ge π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a /Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling.

View Article and Find Full Text PDF

Electrocatalytic Biomass Oxidation via Acid-Induced In Situ Surface Reconstruction of Multivalent State Coexistence in Metal Foams.

Adv Mater

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China.

Electrocatalytic biomass conversion offers a sustainable route for producing organic chemicals, with electrode design being critical to determining reaction rate and selectivity. Herein, a prediction-synthesis-validation approach is developed to obtain electrodes for precise biomass conversion, where the coexistence of multiple metal valence states leads to excellent electrocatalytic performance due to the activated redox cycle. This promising integrated foam electrode is developed via acid-induced surface reconstruction to in situ generate highly active metal (oxy)hydroxide or oxide (MOH or MO) species on inert foam electrodes, facilitating the electrooxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-furandicarboxylic acid (FDCA).

View Article and Find Full Text PDF

We demonstrate a high-performance ultrafast broadband time-resolved photoluminescence (TRPL) system based on the transient grating photoluminescence spectroscopy (TGPLS) technique. The core of the system is a Kerr effect-induced transient grating (TG) optical gate driven by high repetition rate ultrashort laser pulses at 1030 nm with micro-Joule pulse energy. Satisfying the demands of spectroscopy applications, the setup achieves high sensitivity, rapid data acquisition, ultrafast time resolution, and a wide spectral window from ultraviolet to near-infrared.

View Article and Find Full Text PDF

Objective: Few prognostic analyses have been conducted for papillary thyroid cancer (PTC) patients with preablative stimulated Tg >10 ng/mL. We investigated the therapeutic responses and prognosis of these patients after the initial radioiodine (RAI) therapy.

Methods: We retrospectively assessed 256 patients with PTC who underwent RAI remnant ablation after total thyroidectomy, and all presTg levels were >10 ng/mL.

View Article and Find Full Text PDF

Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.

View Article and Find Full Text PDF