16 results match your criteria: "University of Rhode Island Narragansett[Affiliation]"

Article Synopsis
  • Salp blooms significantly enhance the ocean's biological carbon pump (BCP) by facilitating the export of organic matter, even though their sporadic nature often leads to underrepresentation in models.
  • During a 2018 study in the northeast subarctic Pacific, it was found that salps produced fecal pellets that accounted for up to 82% of the particulate organic carbon (POC) from the entire epipelagic zooplankton community.
  • The rapid sinking and low degradation rates of salp fecal pellets contribute to a substantial increase in carbon export efficiency, elevating the BCP's functionality and enhancing carbon sequestration, especially in low flux ocean environments.
View Article and Find Full Text PDF

Diatoms in the genus produce the neurotoxin domoic acid. Domoic acid bioaccumulates in shellfish, causing illness in humans and marine animals upon ingestion. In 2017, high domoic acid levels in shellfish meat closed shellfish harvest in Narragansett Bay, Rhode Island for the first and only time in history, although abundant have been observed for over 60 years To investigate whether an environmental factor altered endemic physiology or new domoic acid-producing strain(s) were introduced to Narragansett Bay, we conducted weekly sampling from 2017 to 2019 and compared closure samples.

View Article and Find Full Text PDF

Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water-column DFe distributions has not been previously documented. We collected hydrographic data and water-column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April-May 2017 (late austral fall).

View Article and Find Full Text PDF
Article Synopsis
  • Plankton imaging systems with automated classification have enhanced the study of aquatic ecosystems by enabling detailed tracking of plankton populations.
  • These systems capture high-resolution imaging data, offering insights not only into species abundance but also into functional traits of individual plankton.
  • The text suggests using machine learning and computer vision techniques to analyze this imaging data, proposing that these methods could be applied to other organisms in both aquatic and terrestrial environments.
View Article and Find Full Text PDF

Functional traits are increasingly used to assess changes in phytoplankton community structure and to link individual characteristics to ecosystem functioning. However, they are usually inferred from taxonomic identification or manually measured for each organism, both time consuming approaches. Instead, we focus on high throughput imaging to describe the main temporal variations of morphological changes of phytoplankton in Narragansett Bay, a coastal time-series station.

View Article and Find Full Text PDF

To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux.

View Article and Find Full Text PDF

Hydrothermal ecosystems face threats from planned deep-seabed mining activities, despite the fact that patterns of realized connectivity among vent-associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genus (.

View Article and Find Full Text PDF

Subseafloor life and its biogeochemical impacts.

Nat Commun

August 2019

Graduate School of Oceanography, University of Rhode Island Narragansett Bay Campus, 215 South Ferry Road, Rhode Island, 02882, USA.

Subseafloor microbial activities are central to Earth's biogeochemical cycles. They control Earth's surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources.

View Article and Find Full Text PDF

Rotavirus is the most common cause of diarrheal disease among children under 5. Especially in South Asia, rotavirus remains the leading cause of mortality in children due to diarrhea. As climatic extremes and safe water availability significantly influence diarrheal disease impacts in human populations, hydroclimatic information can be a potential tool for disease preparedness.

View Article and Find Full Text PDF

Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.

View Article and Find Full Text PDF

Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P.

View Article and Find Full Text PDF

Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined, and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al), cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) from natural aerosol samples in seawater over a 7 days period to (1) evaluate the role of extraction time in trace metal dissolution behavior and (2) explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples), to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples).

View Article and Find Full Text PDF

Maintaining a way of life for São Miguel Island (the Azores archipelago, Portugal): an assessment of coastal processes and protection.

Sci Total Environ

May 2014

Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal. Electronic address:

Traditional hard engineering structures and recently emerging soft engineering alternatives have been employed to protect vulnerable coastlines. Despite negative publicity, they have ensured community survival where socio-economic benefits outweigh adverse impacts. This is especially true for Small Islands (SI) where increasing sea levels and storm intensities threaten already limited land availability.

View Article and Find Full Text PDF

Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse.

View Article and Find Full Text PDF

Sediment and polyethylene sampler-based estimates of polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) concentrations in Newark Bay, New Jersey (USA) benthic biota were compared. Biota concentrations based on sediment were estimated using an organic carbon (OC)-water partitioning model and an OC and black carbon (BC)-water dual model. Biota concentrations based on polyethylene were estimated from samplers deployed in the Newark Bay water column and samplers immersed in a sediment/porewater slurry in the laboratory.

View Article and Find Full Text PDF

Vibrio cholerae is a human pathogenic marine bacterium inhabiting coastal regions and is vectored into human food and water supplies via attachment to particles including detritus, phytoplankton, and zooplankton. Particle colonization by the pathogen is inhibited by an antagonistic interaction with the particle-associated Vibrionales bacterium SWAT3, a producer of the antibiotic andrimid. By analyzing the individual movement behaviors of V.

View Article and Find Full Text PDF