3 results match your criteria: "University of Regensburg D-93053 Regensburg Germany ruth.gschwind@chemie.uni-regensburg.de.[Affiliation]"

-Triflylphosphoramides (NTPAs) represent an important catalyst class in asymmetric catalysis due to their multiple hydrogen bond acceptor sites and acidity, which is increased by several orders of magnitude compared to conventional chiral phosphoric acids (CPAs). Thus, NTPAs allow for several challenging transformations, which are not accessible with CPAs. However, detailed evidence on their hydrogen bonding situation, complex structures and aggregation is still lacking.

View Article and Find Full Text PDF

BINOL derived chiral phosphoric acids (CPAs) are a prominent class of catalysts in the field of asymmetric organocatalysis, capable of transforming a wide selection of substrates with high stereoselectivities. Exploiting the Brønsted acidic and basic dual functionality of CPAs, substrates with both a hydrogen bond acceptor and donor functionality are frequently used as the resulting bidentate binding two hydrogen bonds is expected to strongly confine the possible structural space and thus yield high stereoselectivities. Despite the huge success of CPAs and the popularity of a bidentate binding motif, experimental insights into their organization and origin of stereoinduction are scarce.

View Article and Find Full Text PDF

In ion pairing catalysis, the structures of late intermediates and transition states are key to understanding and further development of the field. Typically, a plethora of transition states is explored computationally. However, especially for ion pairs the access to energetics computational chemistry is difficult and experimental data is rare.

View Article and Find Full Text PDF