9 results match your criteria: "University of Pittsburgh 219 Parkman Avenue[Affiliation]"

The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time.

View Article and Find Full Text PDF

Synthesis and antiproliferative activity of a tetrahydrofuran analog of FR901464.

Bioorg Med Chem Lett

May 2024

Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center 5117 Centre Ave, Pittsburgh, PA 15232, United States. Electronic address:

FR901464 is a natural product that exhibits antiproliferative activity at single-digit nanomolar concentrations in cancer cells. Its tetrahydropyran-spiroepoxide covalently binds the spliceosome. Through our medicinal chemistry campaign, we serendipitously discovered that a bromoetherification formed a tetrahydrofuran.

View Article and Find Full Text PDF

Recent Progress on One-Pot Multisubstrate Screening.

Org Process Res Dev

July 2023

Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.

Traditionally, new synthetic reactions have been developed using a model substrate to screen reaction conditions before testing the optimized conditions with a range of more complex substrates. In 1998, Gao and Kagan pooled multiple substrates in one pot to study the generality of an enantioselective method. Although such one-pot multisubstrate screenings may be powerful, few applications have appeared in the literature.

View Article and Find Full Text PDF

3D printed MOF-based mixed matrix thin-film composite membranes.

RSC Adv

July 2021

DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA

MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes.

View Article and Find Full Text PDF

Due to their high stability and specificity in living cells, fluorescently labeled nanobodies are perfect probes for visualizing intracellular targets at an endogenous level. However, intrabodies bind unrestrainedly and hence may interfere with the target protein function. Here, we report a strategy to prevent premature binding through the development of photo-conditional intrabodies.

View Article and Find Full Text PDF

A nontrigonal phosphorus triamide (, P{N[-NMe-CH]}) is shown to catalyze C-H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C-H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P-N cooperative activation of HBpin by to give -hydrido diazaphospholene , which is diverted by Atherton-Todd oxidation with chloroalkane to generate -chloro diazaphospholene .

View Article and Find Full Text PDF

The general limitations on liquid chromatographic performance in isocratic and gradient elution are now well understood. Many workers have contributed to this understanding and to developing graphical methods, or plots, to illustrate the capabilities of chromatographic systems over a wide range of values of operational parameters. These have been invaluable in getting a picture, in broad strokes, about the value of changing an operational parameter or the value of one separation approach over another.

View Article and Find Full Text PDF

On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this.

View Article and Find Full Text PDF

We developed a new photonic crystal hydrogel material based on the biocompatible polymer poly (vinyl alcohol) (PVA), which can be reversibly dehydrated and rehydrated, without the use of additional fillers, while retaining the diffraction and swelling properties of polymerized crystalline colloidal arrays (PCCA). This chemically modified PVA hydrogel photonic crystal efficiently diffracts light from the embedded crystalline colloidal array. This diffraction optically reports on volume changes occurring in the hydrogel by shifts in the wavelength of the diffracted light.

View Article and Find Full Text PDF