9,646 results match your criteria: "University of Petroleum[Affiliation]"

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

In waterflooding development of narrow channel reservoirs, the water cut rises quickly, and the reservoir becomes nearly fully flooded, yet oil recovery remains low. The narrow strip sand body and long-term water injection create a complex oil and water distribution, making it difficult to evaluate the degree of reservoir utilization during waterflooding. This paper establishes a practical streamline method to quantitatively characterize the waterflooding mobilization degree of narrow channel reservoirs.

View Article and Find Full Text PDF

Detection of biomolecules, Glutathione (GSH) in particular, is important because it helps assess antioxidant capacity, cellular protection, detoxification processes, and potential disease associations. Monitoring glutathione levels can provide valuable information about overall health and well-being. Many medical disorders have been connected to glutathione levels.

View Article and Find Full Text PDF

The oil film formed by the adhesion of crude oil to the resin-asphalt adsorption layer is difficult to peel off due to the strong oil-solid interaction, which severely limits further improvements in oil recovery. Although conventional compound oil displacement systems can effectively reduce oil-water interfacial tension, facilitate oil droplet deformation, and alleviate the Jamin effect, they are insufficient in controlling the wettability of oleophilic rock surfaces. In this paper, sodium nonylphenol polyoxyethylene ether sulfate (NPES) and sodium lauric acid ethanolamine sulfonate (HLDEA) were compounded to construct an efficient oil displacement system that simultaneously achieves wettability control of lipophilic surfaces and ultralow oil-water interfacial tension.

View Article and Find Full Text PDF

It is imperative to recover the valuable components of spent HPCs. We have proposed a hydrometallurgical process and recovered 99.9% of V, 99.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Ab initio calculation of hyper-neutron matter.

Sci Bull (Beijing)

January 2025

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Bonn, D-53115, Germany; Institute for Advanced Simulation (IAS-4), Forschungszentrum Jülich, Jülich, D-52425, Germany; Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich, Jülich, D-52425, Germany; Tbilisi State University, Tbilisi, 0186, Georgia; Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China. Electronic address:

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.

View Article and Find Full Text PDF

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.

View Article and Find Full Text PDF

Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.

View Article and Find Full Text PDF

This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.

View Article and Find Full Text PDF

Preparation of Colored Polymer Microspheres.

Molecules

January 2025

College of New Energy and Materials, China University of Petroleum, Beijing 102249, China.

Colored polymer microspheres have attracted significant attention in both academia and industry due to their unique optical properties and extensive application potential. However, achieving a uniform distribution of dyes within these microspheres remains a challenge, particularly when heavy concentrations of dye are used, as this can lead to aggregation or delamination, adversely affecting their application. Additionally, many dyes are prone to degradation or fading when exposed to light, heat, or chemicals, which compromises the long-term color stability of the microspheres.

View Article and Find Full Text PDF

The hydrate blockage avoidance performance of two anti-agglomerants (coconut amidopropyl dimethylamine, propylene bis (octadecylamidopropyl dimethylammonium chloride)) and their mixtures with polyvinylpyrrolidone (PVP) was tested in a high-pressure rocking cell apparatus. The effect of gas-liquid ratio, water content and PVP concentration were analyzed. A method for evaluating the kinetic inhibiting and anti-agglomerating performance of hydrate inhibitors was established.

View Article and Find Full Text PDF

Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering.

Materials (Basel)

January 2025

Department of Biological and Chemical Engineering, Jining Polytechnic, Jining 272037, China.

The development of carbon-based supercapacitors is pivotal for advancing high energy and power density applications. This review provides a comprehensive analysis of structural regulation and performance enhancement strategies in carbon-based supercapacitors, focusing on electrode material engineering. Key areas explored include pore structure optimization, heteroatom doping, intrinsic defect engineering, and surface/interface modifications.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Bioremediation of Heavy Metal-Contaminated Solution and Aged Refuse by Microbially Induced Calcium Carbonate Precipitation: Further Insights into .

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.

View Article and Find Full Text PDF

Explainable AI in Diagnostic Radiology for Neurological Disorders: A Systematic Review, and What Doctors Think About It.

Diagnostics (Basel)

January 2025

Aerospace Engineering Department and Interdisciplinary Research Center for Smart Mobility and Logistics, and Interdisciplinary Research Center Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Artificial intelligence (AI) has recently made unprecedented contributions in every walk of life, but it has not been able to work its way into diagnostic medicine and standard clinical practice yet. Although data scientists, researchers, and medical experts have been working in the direction of designing and developing computer aided diagnosis (CAD) tools to serve as assistants to doctors, their large-scale adoption and integration into the healthcare system still seems far-fetched. Diagnostic radiology is no exception.

View Article and Find Full Text PDF

Background: Papaya leaves (PLs) are known for their therapeutic benefits and traditional use in treating inflammation, infections, and various health conditions. Rich in bioactive compounds, PLs are studied for their potential applications in functional foods. This study analyzed their nutritional, phytochemical, structural, thermal, and antimicrobial properties to evaluate their role as a health-promoting ingredient.

View Article and Find Full Text PDF

Refractory High-Entropy Alloys (RHEAs), such as NbMoTaW, MoNbTaVW, HfNbTaZr, ReHfNbTaW, NbTiAlVTaHfW, TiNbMoTaW (x = 0, 0.25, 0.5, 0.

View Article and Find Full Text PDF

Molecular Mechanisms and Pathways of Mesenchymal Stem Cell-mediated Therapy in Brain Cancer.

Curr Stem Cell Res Ther

January 2025

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India.

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach in the treatment of brain cancer due to their unique biological properties, including their ability to home tumor sites, modulate the tumor microenvironment, and exert anti-tumor effects. This review delves into the molecular mechanisms and pathways underlying MSC-mediated therapy in brain cancer. We explore the various signalling pathways activated by MSCs that contribute to their therapeutic efficacy, such as the PI3K/Akt, Wnt/β-catenin, and Notch pathways.

View Article and Find Full Text PDF

Novel enhancement strategy for Hg adsorption in wastewater: Nonthermal plasma-mediated advanced modification of zero-valent iron-carbon galvanic cells with thiol functionalization.

J Environ Manage

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:

Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.

View Article and Find Full Text PDF

A highly sensitive and fast-response fluorescence nanoprobe for in vivo imaging of hypochlorous acid.

J Hazard Mater

January 2025

State Key laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China. Electronic address:

Fluorescent probes for in vivo hypochlorous acid (HClO) imaging often face challenges of low selectivity and high cytotoxicity, largely due to poor analyte recognition and water-insoluble aromatic skeletons. To address this, we synthesized fluorescein hydrazide by introducing a spiro-lactam unit into fluorescein, which offers high emission intensity and molar absorption. The five-membered heterocycle in fluorescein hydrazide is selectively disrupted by HClO, enhancing the conjugated system and electron delocalization of the fluorophore, resulting in highly sensitive fluorescence detection of HClO.

View Article and Find Full Text PDF